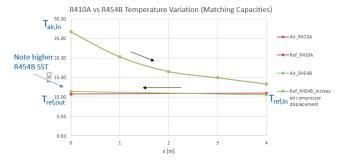
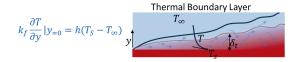
Heat Pump Design for R454B

Project Goal

- Evaluated a residential heat pump system using R410A vs. R454B
- Aimed to develop improved R454B designs for better low-ambient performance

R454B Refrigerant Property Insights

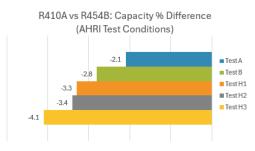

• A wider vapor dome with ~18% higher latent heat


· 20% lower suction density for reduced mass flow rate

Parameters	Units	R410A	R454B	%Difference
Δh_evap	kJ/kg	334	394	18%
Suction Density	kg/m³	41	33	-20%
ṁ	kg/s	0.065	0.051	-22%
k_f	Wm-K	0.085	0.101	18.4%

 A slight temperature glide (~0.86 K) affecting evaporator performance

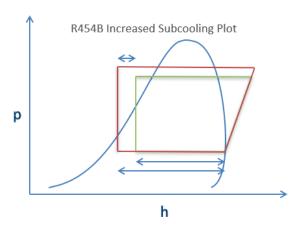
· 20% higher conductivity to improve heat transfer

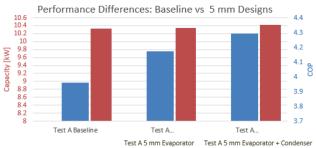


Key Results

- R454B design improvements enable matching/exceeding R410A performance
- Redesigned heat pumps can maintain system capacity and enhance COP without extra compressor changes

Objectives


- · Boost energy efficiency and system performance
- Reduce GWP by transitioning from R410A to R454B


Baseline vs Drop-in Capacity Comparison

Solution

- Utilized CoilDesigner® and VapCyc® for baseline analysis
- Increased compressor displacement by 4.6% to counter R454B's low-ambient limitations
- Increased subcooling from 4°C to 12°C
- 2% capacity boost

 Improved coil design with 5 mm copper tubes, counterflow circuitry, and advanced fin designs

Effect of 5 mm designs on R454B System Performance