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New correlations for the air-side pressure drop and heat transfer coefficient (HTC) of slit 

and louver fin heat exchangers with 3-5 mm outer diameter tubes were developed based 

on Computational Fluid Dynamics (CFD) simulations of small, symmetric fin sections 

using Design of Experiments (DOE) techniques.  The prediction accuracy of these CFD-

based correlations was validated by experimental testing of 16 unique 5 mm slit and 

louver fin heat exchangers under a range of air velocities. The experimental results 

indicate that the proposed CFD-based correlation with correction factors for air-side 

pressure drop can predict 100% of the experimental observations with 20% error or less. 

After a new data reduction procedure accounting for fin conduction was implemented and 

a single correction factor applied, the HTC correlations could predict 98% of accepted 

test data with 20% error or less regardless of fin type. 
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1. Introduction 

In recent years, the optimization of heat transfer and energy systems has been driven by 

increasing pressures to minimize environmental impacts while minimizing costs. Heat 

exchangers are critical to the performance of thermal systems across a wide range of 

industries including residential and commercial heating, ventilation, air conditioning, and 

refrigeration (HVAC&R); automotive cooling and heating; and energy generation and 

industrial processes, and their optimization can yield significant improvements in energy-

efficiency and reductions in costs and environmental impacts.  

The International Panel on Climate Change (IPCC) concluded that buildings account for 

32% of global final energy use and 19% of energy-related greenhouse gas emissions 

(Lucon et al., 2014). Heating and cooling applications that utilize heat exchangers 

consume a substantial portion of that value; space heating alone is estimated to account 

for 32-34% of global building energy. Global energy consumption may double or triple 

by mid-century and space heating and cooling demands are expected to increase by 

approximately 180% by 2050 compared to 2010. In the US, space heating, water heating, 

air conditioning, and domestic refrigeration account for 7.1 quadrillion BTUs of energy 

consumption in residential homes, or about 70% of total residential energy consumption 

(US Energy Information Administration, 2009). Furthermore, direct emissions from these 

HVAC&R applications release greenhouse gases (GHGs) into the atmosphere; in 2011, 

hydrofluorocarbons (HFCs) accounted for the release of the equivalent of 129 million 

metric tons of CO2, about 2% of US total GHG emissions (US EPA, 2013). Heat 

exchanger design and optimization can improve the energy-efficiency of HVAC&R 
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equipment to reduce indirect CO2 emissions as well as reduce the charge of refrigerant to 

reduce direct emissions and enable low-GWP fluids.   

Tube-fin heat exchangers, composed of round tubes through sheets of fins, are used in a 

variety of applications for transferring heat, including widespread use throughout the 

HVAC&R industry. Conventionally, tube-fin heat exchangers in these industries are 

constructed from tubes having outer diameters of 7 mm or more, but recent work has 

shown that heat exchangers with smaller diameter tubes (less than or equal to 5 mm) can 

achieve superior performance with reduced material costs. As an example, a 5 mm outer 

diameter (OD) tube-fin heat exchanger is shown in Figure 1. 

 

Figure 1: Tube-fin heat exchanger with 5 mm OD tubes 
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In the HVAC&R industry, enhancements to fin surfaces have been introduced for 

decades to improve the thermal-hydraulic performance of heat exchangers. Fins can be 

altered with wavy patterns, vortex generators, louvers, and slits, among many other 

configurations. This study focuses on heat exchangers with louver and slit enhancements. 

The design of a new heat exchanger must often satisfy a number of performance, cost, 

safety, and manufacturing requirements and is interdependent with the other components 

of the vapor compression system. In order to prevent costly and time-consuming trial and 

error in the laboratory, simulation tools are utilized to predict the performance of heat 

exchangers. In order to predict overall heat exchanger performance, the heat transfer and 

pressure drop performance of the tube and fin surfaces must be known. For decades, 

researchers have developed correlations to predict the heat transfer coefficients and 

pressure drops of heat transfer surfaces from experimental testing. The goal of such 

studies is to test a wide range of different tube or fin geometries and operating conditions 

such that a mathematical model for the performance can be developed which can predict 

performance of not only the tested designs, but also other heat exchanger configurations 

within the tested range of parameters and conditions. Since many manufacturers produce 

very different geometries of tubes and fins, this generality is crucial for a correlation to be 

applicable to the heat exchanger designer.  

In recent years, computational fluid dynamics (CFD) has been used increasingly to 

simulate heat transfer and fluid flow problems. While far more computationally 

expensive than calculating performance from an empirical correlation, CFD allows the 

user to determine the heat transfer and flow behavior of new, untested geometries. Due to 

the high cost and time-consuming nature of experimental correlation development, and 
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the ever-improving accuracy and speed of CFD simulations, it is desirable to develop 

new correlations based on CFD simulations to minimize experimental efforts and develop 

correlations that are applicable across a very wide range of geometry and operational 

parameters. However, because this process is relatively new, it is also necessary to 

validate the predictions made by the CFD simulations with experimental data to confirm 

their accuracy.  
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2. Objectives 

This thesis aims to meet several key objectives with applications for researchers studying 

new air-side heat transfer surfaces as well as product designers in the industry.  

1. The first objective of this work is to adequately summarize the procedure 

followed to develop CFD-based correlations for the air-side thermal-hydraulic 

performance of slit- and louver- fin heat exchangers. This process is documented 

here so that it can be used as a reference for developing future correlations in this 

manner. 

2. A simple and automated procedure for developing new correlations using 

regression tools in MATLAB is also suggested. The aim is to demonstrate that the 

challenging and time-consuming approach using dimensional analysis can be 

replaced with a simpler linear regression model that requires little time to develop 

and can produce new correlations with a faster turnaround time.  

3. Experimental results are presented to validate the predictions from these CFD 

simulations and demonstrate the accuracy of this approach for correlation 

development. Any deviations between theoretical predictions and observations 

may indicate shortcomings in the predictive accuracy of the CFD-based approach 

or uncertainties in experimental values. 

4. The result of this effort is a set of correlations that professionals in the industry 

can use to evaluate the air-side performance of 3-5 mm slit- and louver-fin heat 

exchangers. These correlations can be used with a low computational cost, but 

were derived from a large number of accurate CFD simulations and were 

validated against experimental data. The goal is to provide the necessary tools for 
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heat exchanger designers to evaluate and optimize these heat exchanger types in 

order to meet goals of enhanced efficiency, reduced size and weight, reduced 

refrigerant charge, and reduced cost. The extensive range of these correlations is 

intended to allow for the evaluation of not only the current state of the art, but 

also future designs that are not currently manufactured. 
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3. Background 

Accurate modeling of heat exchangers is often achieved through the use of published heat 

transfer and pressure drop correlations for the air- and refrigerant-side surfaces of the 

heat exchanger. Researchers have been experimentally testing and publishing these types 

of heat transfer and pressure drop correlations since the early to mid-20th century, 

however testing was usually limited to heat exchangers with tubes having greater than 7 

mm outer diameter. Several researchers have conducted experiments and simulation 

studies to characterize the air- and refrigerant-side performance of small diameter tube-

fin heat exchangers. While many publications establish the performance of some specific 

configurations of tubes and fins, most lack the generality required to evaluate and 

optimize the full range of potential designs.  

3.1 Enhanced surfaces 

For decades, heat exchangers have been designed with a variety of surface enhancements 

on both the interior of tubes and exterior surfaces of fins intended to increase heat 

transfer performance. The working principle of such enhancements is to alter the air or 

refrigerant flow behavior in order to achieve improved heat transfer without causing an 

unacceptable increase in pressure drop.  

3.1.1 Tube enhancements 

Internal enhancements are implemented in tubes to improve heat transfer performance 

and reduce heat exchanger costs. The basic working principle of such designs is that 

internal geometries such as fins or other protrusions will increase the internal surface area 

and increase turbulence in the flow, thereby increasing heat transfer. When two-phase 

refrigerant flows through enhanced tubes, they can extend the length of the heat 
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exchanger for which the refrigerant is in the annular flow regime, where heat transfer is 

greatest, resulting in improved performance (Liebenberg and Meyer, 2006). Tube-fin heat 

exchangers commonly use smooth tubes (no enhancements), as opposed to helical-

microfin, and herringbone fins (shown in Figure 2). Smooth tubes are often the lowest 

cost, but helical microfin tubes can be extruded or drawn while herringbone fins must be 

welded along the tube length. 

 

Figure 2: Helical microfin (left) and herringbone (right) enhanced tubes (Cavallini, 

2003) 

3.1.2 Fin enhancements 

Tube-fin heat exchangers have been produced with enhanced fin geometries including 

wavy, slit, and louver fins (pictured in Figure 3) for many years. Surface enhancements 

like wavy fins increase fin surface area and turbulent heat transfer compared to flat fins 

by the nature of their geometry. Slit and louver fins are quite common in the modern 

HVAC&R industry due to their high heat transfer performance that results from the 

interruption and re-establishment of boundary layers along the surface of the fin.  Air-

side heat transfer and pressure drop correlations have been developed and published 

through experimental work. Wang (2000a, 2002) developed correlations for herringbone 
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and smooth wavy fins in inline and staggered arrangements. Slit fin (Wang et al., 2001) 

and louver fin (Wang et al., 1999) heat transfer and pressure drop correlations were also 

developed. However, all of these published correlations are limited to tube diameters 

approximately 7 mm and greater as summarized in Table 1. Air-side thermal resistances 

are much higher than those from conduction and refrigerant-side convection and 

therefore air-side performance is the most important factor in overall heat exchanger 

thermal performance. Accurate modeling of air-side heat transfer is essential for 

calculating overall heat transfer and air-side pressure drop is critical in fan/blower design. 

Heat exchangers with tube diameters of 5 mm or less cannot be reliably modeled using 

conventional correlations from the literature due to the lack of available data from small 

diameter tubes.  

 

 

Figure 3: Enhanced fin surfaces; top left: wavy herringbone, top right: smooth/sine 
wavy (Wang, 2002), bottom left: slit, bottom right: louver (Wang, 1999) 
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Table 1: Range of sample conventional air-side correlations 

Fin type OD [mm] Pt [mm] Pl [mm] Nbanks 

Wavy (Wang, 2002) 7.66-16.85 21-38 12-33 1-6 
Slit (Wang, 2001) 7.52-16.4 20-39 12.7-33 1-6 
Louver (Wang, 1999) 6.9-10.4 17.7-25.4 12.7-22.0 1-6 

 

3.2 Refrigerant-side correlations 

In order to accurately predict heat exchanger performance, heat transfer and pressure 

drop must be predicted for the single phase (liquid, vapor, or supercritical vapor) and 

two-phase (condensing or evaporating) refrigerant. The heat transfer performance of 

condensing and evaporating refrigerant in smooth tubes with diameters as small as 2 mm 

has already been characterized (for example, Shah (2013, 2014), respectively). 

The performance of enhanced tubes had been well characterized by researchers including 

Cavallini (2003) and Miyara (2000) for conventional tube diameters of 7 mm and above. 

In recent years, several publications have been released attempting to characterize 

performance of enhanced microfin tubes for smaller diameter tubes. Many of these 

correlations have limited applicability, such as Huang’s correlations (2010) developed 

from testing just one 5 mm and one 4 mm microfin tube with condensing R410A. Other 

examples of correlations for a single tube geometry exist throughout the literature, but are 

not generally applicable for a range of tube diameters and geometries. Wu’s work (2015) 

is likely the most comprehensive review of heat transfer correlations at the time of 

writing for microfin tubes including a range of geometries in the small (≤5 mm) range. 

The author used five datasets for single-phase flow in tubes with inner diameters from 4.6 

to 14.83 mm to identify the most accurate available correlation (Ravigururajan and 

Bergles, 1985). Nine published datasets of condensing refrigerant in tubes with inner 
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diameters from 3.56-8.98 mm were reviewed to identify the most suitable correlation for 

condensation (Yu and Koyama, 1998). Wu’s correlation (2013) for evaporating 

refrigerant was found to predict 90% of points with ±30% error for 16 published datasets 

with inner tube diameters ranging from 2.1-14.85 mm.  

3.3 Air-side correlations 

While air-side correlations have been developed for conventional tube-fin heat 

exchangers with various enhanced geometries, no comprehensive experimentally-based 

publications have been produced to experimentally predict the performance of heat 

exchangers with small diameter tubes. Some publications include experimental 

performance data for a limited set of geometries; for example, Gao (2013) tested four 5 

mm heat exchangers with louver fins (discussed further in the next section). However, 

these authors have not developed fully generic correlations for air-side performance of 

heat exchangers with small diameter tubes, meaning that designs with different tube 

pitches and louver geometries cannot be reliably predicted from the limited published 

results. Although many manufacturers already design and produce heat exchangers for 

HVAC equipment using 5 mm tubes, the air-side performance and details of these fin 

designs are not publicly available.  

Conventionally, air-side heat transfer and pressure drop correlations would require 

experimental testing of a large number of heat exchangers in order to ensure accuracy 

across the entire range of design parameters. Taking for an example a well-cited and 

often-used correlation for louver fin heat exchangers (Wang et al., 1999): the author 

tested 49 unique heat exchangers each at 10 different points to develop a generic 

correlation. While the correlation covers 6 different louver fin geometries, 5 tube 
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diameters, 3 tube pitches, 3 louver heights, 4 louver pitches, and 5 different numbers of 

tube rows, the selection of tested geometries is limited to those that are commercially 

available. Production of unique fin geometries is extremely costly and as such, 

experimentally-developed correlations cannot be created for a prescribed design space 

with a full-range of fin designs.  

3.4 Experimental methods and data reduction for correlation development 

Numerous authors have prepared air-side correlations for tube-fin heat exchangers 

through experimental work. In general, the procedure requires that the heat exchanger is 

placed in a controlled wind tunnel and proper air and water flow rate, temperature, and 

pressure measurements are taken. Requirements for test procedures and measurement 

techniques are standardized by several organizations and the standards set by the 

American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) 

are often followed for heat exchanger tests in the HVAC&R industry. ASHRAE Standard 

41 (ANSI/ASHRAE, 1992) contains specifications for proper temperature, air flow, and 

pressure measurements among several other quantities. ASHRAE’s Standard 33, 

(ANSI/ASHRAE, 2016) specifies a standardized testing procedure for heating and 

cooling coils. Once data is collected, it can be reduced through calculation to determine 

heat transfer coefficients.  

Experimental techniques to measure heat transfer and pressure drop of heat exchangers 

date back over a century. Wilson (1915) published a technique, later referred to as the 

“Wilson plot method”, for determining convective heat transfer coefficients of heat 

exchangers. The technique has since been modified by many authors for use in different 

types of heat exchangers but in its essence the technique remains the same. Heat transfer 
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measurements are made on a heat exchanger with two fluid streams while the velocity of 

one of the streams is modified and the other remains constant; this changes the heat 

transfer coefficient of one stream while maintaining the same conductive heat transfer 

and convective heat transfer of the unchanged fluid. When these results are plotted with 

the overall thermal resistance on the Y-axis and the 1/vrn (where v is velocity and n is a 

coefficient) on the x-axis, a linear regression can be used to determine the convective 

heat transfer coefficients.  

Fernández-Seara et al. (2007) reviewed the history and summarized several modifications 

to the Wilson plot method, which typically replace the 1/vrn term with a functional form, 

or correlation, for the heat transfer coefficient of one fluid. Because the heat transfer of 

liquid flowing in smooth tubes is well-characterized by correlations, for example 

Gnielinski (1976), this approach can lead to a more accurate calculation of the air-side 

heat transfer coefficient from tube-fin heat exchanger tests. This modified Wilson plot 

method is a preferred technique in the industry for testing air-to-refrigerant heat 

exchangers.   

Wang et al. (2000b) outlined a data reduction technique for air-side heat transfer of tube-

fin heat exchangers. The approach relies on generalized ε-NTU relations to determine the 

overall UA of the heat exchanger and estimates the refrigerant-side resistance using the 

Gnielinski correlation (1976). This approach has been utilized to develop several well-

cited correlations for tube-fin heat exchangers of various fin geometries.  

3.5 CFD-based correlations 

In recent years, advancements in both the reliability and speed of computational fluid 

dynamics (CFD) have allowed for its use in evaluating the performance of heat 
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exchangers. Compared with conventional experimental techniques, CFD simulations 

have the potential to deliver results more quickly and at a lower cost. Another major 

advantage is the ability to simulate any arbitrary geometry; this allows for the 

development of correlations that cover wide ranges of geometry parameters in increments 

that cannot be conveniently prototyped and tested.  

Simulations of heat exchangers have been attempted since the 1990s (Bestani et al., 

1990). Since then, CFD was used as a tool to evaluate heat transfer and pressure drop 

performance for particular heat exchanger designs including novel geometries such as 

oval / elliptical tubes (Sun et al., 2014 and Taler and Ocłoń, 2014). Recently, CFD has 

been utilized to extend or supplement correlations beyond the ranges for which they were 

tested. Heat exchangers with large diameter tubes, exceeding the values tested by Wang 

(2000), were simulated through CFD and found to vary significantly from Wang’s 

predictions (Xie et al., 2009).  

CFD has been used as a tool for fin design and soft-optimization in several publications 

(Wu et al., 2012 and Gao, 2013). These authors presented an approach to evaluate trends 

in fin performance and select values of louver dimensions and tube pitches with good 

performance. Four prototype heat exchangers were constructed and tested based on this 

optimization study and a correlation was developed for air-side heat transfer and pressure 

drop (Gao, 2013). This approach leverages the strengths of CFD to evaluate varying fin 

designs and correlate performance. However, the dataset is extremely limited and the 

correlation is not applicable across a wide range of operating conditions. Similarly, Kong 

et al. (2016) studied slit fin heat exchangers with 25 mm diameter tubes through a range 
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of CFD simulations; the publication included experimental validation and the 

development of heat transfer and pressure drop correlations.  

Abdelaziz et al. (2010) published an approach to optimize a novel type of heat exchanger 

using CFD simulations. The construction of the heat exchanger consists of a “webbed” 

set of tubes connected by a fin material as shown in Figure 4. The authors explored a 

wide range of port diameters, number of ports, horizontal and vertical spacing, offset, 

tube length, number of tubes, and velocity by applying Design of Experiments (DOE) 

techniques and developing a metamodel. The design space was sampled with the 

Maximum Entropy Design (MED) technique (Shewry and Wynn, 1987) and space-filling 

cross validation trade-off (SFCVT) adaptive approximation technique (Aute et al., 2013). 

The Kriging technique was used to build a metamodel to predict performance within the 

design space and then the multiobjective genetic algorithm (MOGA) solver was used to 

identify optimal designs. The authors optimized designs for an example radiator 

application which could provide a 61% volume reduction and 84% material volume 

reduction or a 95% reduction in air-side pressure drop, 69% reduction in material 

volume, and 5% reduction in heat exchanger volume when compared to a conventional 

baseline heat exchanger. The applications of Parallel Parameterized Computational Fluid 

Dynamics (PPCFD), DOE, metamodeling, and optimization described in this work are 

adopted in several later publications including this thesis.  
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Figure 4: Heat exchanger design studied by Abdelaziz et al. (2010) 

Bacellar (2014) presented an approach to develop air-side heat transfer and pressure drop 

correlations directly from CFD data for plain fin and finless tube bundles. Unlike past 

work, this effort systematically generated simulation results for an entire design space of 

tube/fin surfaces. The work leverages the PPCFD method to automate the geometry 

generation, meshing, simulation, and data reduction from multiple parallel CFD 

simulations. Bacellar was able to simulate 500 geometries for each heat exchanger type 

using the Maximum Entropy Design (MED) method for DOE to fill the design space. 

This space-filling technique allows for non-biased exploration of the entire design space 

based on a limited number of CFD simulations whereas past publications often relied on 

limited experimental test data from commercially-available fin geometries. As such, the 

approach outlined by Bacellar can characterize a design space in much greater detail than 

would be feasible through an experimental effort. The size of the design space 

underscores the importance of the use of DOE for sampling the design space; if an 

exhaustive search were to be performed with only 5 values for each of the 7 variables, 

57=78,125 simulations would need to be conducted which would require 34 days to 
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compute on 8 parallel processors assuming a conservative 5 minutes per simulation 

(Bacellar observed 5-15 minutes each).  If a greater resolution were desired or a larger 

design space (such as an enhanced fin geometry) were considered, the processing time 

would be even less feasible. The use of DOE allowed the author to sample the design 

space with only 500 simulations. 

In the following year, Bacellar (2015) presented results for a sinusoidal wavy fin surface 

using the same technique. In this work, the author explored a large parameter set of 2-5 

mm OD fin designs with varying wavelength and pattern depth (amplitude) and sampled 

the design space using 1,000 simulations selected using the Latin Hypercubes method for 

DOE. This was the first of such publications to thoroughly explore the design space of an 

enhanced fin geometry. To correlate the results of these simulations, Bacellar adopted a 

modified version of the wavy fin correlation developed by Wang (2002) and solved for 

new coefficients that would minimize the error in predicting the new dataset. Within this 

publication, the authors ultimately found that the proposed correlations for dimensionless 

j and f factors can predict only 64% and 66% of the data respectively with 20% error or 

less. These correlations were further refined such that the Nusselt numbers of 94% of the 

data could be predicted with 15% error or less and 93% of the friction factors were 

predicted with 15% error or less (Bacellar et al., 2016a). The same publication includes 

correlations for the herringbone wavy surface and was able to predict 96% of simulated 

Nusselt numbers with 15% error or less and 94% of friction factors with 15% error or 

less.  

Bacellar (2016b) also expanded the correlation for bare (finless) tubes to include the 

diameter range of 0.5-2.0 mm and a larger range of tube pitches and tube banks in the 
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airflow direction. This work provides an unprecedented correlation for airside heat 

transfer coefficient and pressure drop of very small diameter tubes and follows essentially 

the same approach as the previous publications. In this study, Bacellar showed, through 

validation against 100 additional random data points, that the DOE sampling technique 

was sufficient to produce correlations that would accurately predict the performance of 

random points throughout the entire design space. The results of the CFD correlations 

were validated against an experiment for a heat exchanger constructed from 0.8 mm 

diameter tubes at 15 operating points (5 airflow rates and 3 water flow rates). The 

experimental results showed that while many existing correlations from other authors 

failed to accurately predict the performance, the CFD simulations and the resulting 

correlations predicted the experimental heat transfer coefficients with less than 15% error 

and pressure drop with less than 7% error. Overall the effort produced new correlations 

capable of predicting performance of more than 90% of data within 20% error in this 

previously un-correlated space. The contributions of Bacellar are summarized in Table 2 

to illustrate the range of applicability of the newly developed correlations. It is important 

to note that the range of tubes in the airflow direction, fin densities, and fin thickness is 

greater than is typically explored through most experimental work. While the work is 

extensive, it does not characterize the performance of designs outside this range or using 

other enhanced surfaces and the author is not seeking to extend the work to include 

enhancements such as slit and louver fins which are typical in the HVAC industry. 
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Table 2: Summary of contributions by Bacellar 

Parameter / 
Range 

Bare Tubes 
(Bacellar, 

2014) 

Plain Fins 
(Bacellar, 

2014) 

Smooth and 
Herringbone 
Wavy Fins 
(Bacellar, 

2016) 

Small Bare 
Tubes 

(Bacellar, 
2016) 

Outer diameter, 
Do [mm] 2.0 – 5.0 2.0 – 5.0 2.0 – 5.0 0.5-2.0 

Longitudinal 
tube pitch, Pl 

[mm] 
1.5Do-3.0Do 1.5Do-3.0Do 1.25Do-4.0Do 1.2Do-4.0Do 

Transverse tube 
pitch, Pt [mm] 1.5Do-3.0Do 1.5Do-3.0Do 1.25Do-4.0Do 1.2Do-4.0Do 

FPI [in-1] - 8-24 5-50 - 
Number of rows 
in airflow 
direction, N [-] 

2-20 2-10 2-20 2-40 

Velocity, u [m/s] 0.5-7.0 0.5-7.0 0.5-7.0 0.5-7.0 
Fin thickness, Ft 
[mm] - 0.115 0.05-0.1 - 

Pattern Depth 
/Half 
Wavelength 
Pd/Xf 

- - 0.088-0.84 - 
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4. CFD-based correlation 

Within the HVAC&R industry, a shift to smaller diameter tube heat exchangers is already 

taking place, due to increasing performance and economic pressures. In such 

applications, the use of enhanced fin surfaces, especially louver and slit fins, is quite 

common, yet comprehensive correlations for their performance are not available. The 

approach developed by Bacellar et al. (2014, 2015, 2016) has been demonstrated to be 

both computationally-efficient and sufficiently accurate when compared to random CFD 

simulations and experimental data. A similar approach was taken in this work in order to 

simulate the performance of a large design space of both slit fin and louver fin heat 

exchangers with outer diameters ranging from 3-5 mm. The approach and results of the 

correlation development effort for louver- and slit-fin heat exchangers were published by 

Sarpotdar and Nasuta (2016a and 2016b).  

4.1 Design space 

For each fin type, a parameterized CFD model was developed, allowing the geometry 

variables to be modified externally, then meshed, and simulated automatically. Since 

innumerable designs can be conceived, the design space must be selected to include 

parameters that are important for performance and also ranges of geometries which are 

feasible from a manufacturing perspective (or may be feasible in the future as 

manufacturing technologies improve).  

4.1.1 Louver fin 

Several key parameters that have impacts on the performance of a louver fin were 

identified and selected for study. Ranges of important tube-and-fin geometry parameters 

were selected based on past correlations and manufacturer feedback provided by Burr 
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Oak Tool, Inc. and Heat Transfer Technologies, LLC. The louver angle was kept constant 

at 27° based on manufacturer feedback and research indicating that optimal performance 

is found at similar values of louver angle and significant performance differences are not 

seen through small changes in louver angle (Gao, 2013 and Jang and Chen, 2015). 

Additionally, fin thickness is not varied throughout the simulations because most 

currently-manufactured fins do not vary in thickness significantly and the impact of 

changing fin thickness within typical ranges is expected to have little significance on 

performance. Selecting these 8 variables allowed for successful mapping of the parameter 

space through 1,256 simulations, whereas inclusion of additional variables would 

increase the required number of samples significantly which was found to be infeasible in 

this work. Table 3 summarizes the design space studied in this work and Figure 5 

provides an illustration of the geometry parameters for the louver fin. Parameters Cl and 

Ct are multipliers that define the longitudinal pitch (Pl) as proportional to tube diameter 

(Dn) and the transverse pitch (Pt) as proportional to (and always greater than or equal to) 

the longitudinal pitch (Pl), respectively.  

Table 3: Louver fin parameter space (Sarpotdar et al., 2016a) 

Design Variable unit Min to Max 
Dn mm 3 to 5 
Dc mm (1.023Dn+0.1)+2δf 
Cl = Pl/ Dn -- 2 to 4 
Ct = Pt/Pl -- 1 to 2 
N -- 1 to 6 
Nl -- 2 to 8 
FPI in-1 14 to 40 
Lp mm 0.8 to 1.8 
θ degrees 27 
u m/s 0.75 to 5 
δf mm 0.125 
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Figure 5: Louver fin geometry (Sarpotdar et al., 2016a) 

4.1.2 Slit fin 

Slit fin performance is impacted by geometry parameters including the tube diameter, 

number, and pitches; fin density and thickness; slit height and width; and air velocity. 

Again, in the interest of ensuring manufacturing feasibility and developing a design space 

that can be explored computationally within a reasonable timeframe, some variables must 

be omitted. The fin thickness is fixed at a single value as is the slit width. The slit width 

is an important parameter from a performance perspective and small values perform well, 

however current manufacturing limitations make it very difficult or impossible to 

produce slits with a width less than 1 mm.  

Table 4 summarizes the design space selected for this work and Figure 6 shows the 

relevant geometry parameters graphically.  
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Pt 

Pl 
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Table 4: Slit fin parameter space (Sarpotdar et al., 2016b) 

Design Variable unit Min to Max 
Dn mm 3 to 5 
Dc mm (1.023Dn+0.1)+2δf 
Cl = Pl/ Dn -- 2 to 4 
Ct = Pt/Pl -- 1 to 2 
N -- 1 to 6 
Ns -- 2 to 6 
FPI in-1 14 to 40 
Ch= Sh/Fsp -- 0.3 to 0.7 
Sw mm 1 
u m/s 0.75 to 5 
δf mm 0.098 

 

 

Figure 6: Slit fin geometry (Sarpotdar et al., 2016b) 

4.2 CFD model 

CFD Simulations were conducted using the Star CCM+® CFD package and are 

described in the prior publications (Sarpotdar and Nasuta, 2016a,b). This section provides 

high-level summary information on the CFD modeling approach.  

Within most commercially-available CFD tools, it is now possible to parameterize a 

model such that a geometry can be modified programmatically, similarly to the PPCFD 
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technique. Louver and slit geometries were developed within Star CCM+® with the 

parameterization of geometry variables described in Table 3 and  

Table 4. Meshing is also automated through the software for each new geometry 

generated within the design of experiments sample as illustrated in Figure 7 (b). A 

polyhedral mesh was used for the bulk of the model with a refined boundary layer mesh 

along the tube and fin walls. The two-layer SST K-ω turbulence model was used. The 

boundary conditions of the model are depicted in Figure 7 (a). The domain consists of 

two fins, each cut in half, placed side by side with airflow traveling past; on each side is a 

periodic boundary condition to approximate the effect of the additional fins that would 

exist in both directions. The top and bottom boundaries are cut halfway through the tubes 

and modeled with symmetry boundary conditions. Air flows in through a velocity inlet 

(which is parameterized) and exits through a pressure outlet. The air inlet temperature is 

fixed at 35°C and the tube wall (inner collar) temperature is set as 65°C. This large 

temperature difference is important for ensuring that the results are not “pinched” (when 

air leaves at very nearly the same temperature as the tube wall).  
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Figure 7: CFD (a) boundary conditions and (b) mesh. (Sarpotdar et al., 2016) 

 

A mesh independence study was conducted to ensure that mesh size does not impact the 

results. The Richardson Extrapolation method (Roache, 1997) was used to calculate Grid 

Convergence Index (GCI). For 33 configurations on the boundaries of the design space, 

simulations were carried out with three grid sizes, each having element sizes 1.35 times 

larger than the previous finer mesh. The mean uncertainty in pressure drop and HTC 
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were found to be 1.5% and 1.1%, respectively, and the size of the selected mesh was 

found to be adequate.  

4.3 Data reduction 

Data reduction from the CFD results followed the technique described by (Bacellar et al., 

2014), which is based on Wang et al. (2000b) approach and is summarized in equations 

(1-4) below.  In essence, the simulations are treated in the same manner an experiment 

would be, and the heat transfer coefficients and j factors are determined from the 

observed inlet and outlet temperatures. The Schmidt fin efficiency correlation is used as 

recommended by Wang (and shown in equations (5-11)); although this correlation is 

intended for plain fins, an accurate overall air-side heat transfer coefficient will still be 

achieved when the same model is used for both data reduction and subsequent predictions 

in a heat exchanger simulation tool (in this case CoilDesigner®).  

 

Q̇=ṁ⋅cp0lr⋅(Tair,out-Tair,in)    (1) 
Q̇=UAo. LMTD       (2) 
LMTD = (Tw-Tair,in)-(Tw,-Tair,out)

 ln (
Tw-Tair,in
Tw-Tairout

)
     (3) 

1
UAo

= 1
η0hairAo

+ 𝜹𝜹𝒘𝒘
kwAw

+ 1
href⋅Aref

    (4) 

hair= U
ηo

         (5) 

𝜂𝜂0 = 1 − 𝐴𝐴𝑓𝑓
𝐴𝐴𝑜𝑜

(1 − 𝜂𝜂)     (6) 
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𝑚𝑚𝑚𝑚𝑚𝑚

      (7) 
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The Colburn j factor and the friction factor, f, are defined based on the maximum air 

velocity as shown in equations (12) and (13).  

            j= hair Pr
2
3

ρmumaxcpm
          (12)          

f= Amin
Ao

ρm
ρ1

[ 2ΔPρ1
Gmax

2 (1+σ2)( ρ1
ρ2

-1)]         (13) 

Two additional parameters, jsimple and fsimple are defined in equations (14) and (15) for 

convenient integration with software such as CoilDesigner®. These parameters are 

identical to those defined in equations (12) and (13), but average thermophysical 

properties are replaced with the properties at the inlet state. This simplification is made 

because software such as CoilDesigner does not iterate to use both inlet and outlet 

properties in the calculation of the HTC or ΔP, instead, only the inlet air properties are 

used when determining these parameters. This approach later shows satisfactory ability to 

predict HTC and ΔP values without the need for additional iteration.  

            jsimple= hair Pr
2
3

ρinumaxcpin
          (14)          

fsimple = Amin
Ao

[ 2ΔPρ1
Gmax

2 (1+σ2)]        (15) 

 

4.4 Correlation development 

Initial correlations were developed based on this work (Sarpotdar et al., 2016b, 2016a). 

Initial attempts to fit the reduced CFD data to existing forms of correlations for slit and 

louver fins by Wang et al. (2000a, 1999) failed to produce satisfactory predictions of the 

source data. Instead, the stepwiselm regression approach was used to develop a 

regression model for the data (MathWorks Inc., 2016). This tool can evaluate the 
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significance of all independent variables, their squares, and their interactions and discards 

all terms with p-values greater than 0.05. In order to produce a satisfactory fit and avoid 

negative predictions, all independent variables and response functions are transformed by 

the natural log function. The details of the proposed correlations are outlined in Sarpotdar 

et al. (2016a). The general form of the equation is illustrated in equation (16), where the 

log-transformed functions are predicted by the summation of all log-transformed 

variables, their squares, and their interactions, noting that the redundant and statistically 

insignificant terms are omitted by the stepwiselm algorithm. 

𝒍𝒍𝒍𝒍(𝒇𝒇) =  ∑ ∑ 𝒄𝒄𝒊𝒊𝒊𝒊 ∗ 𝒍𝒍𝒍𝒍 (𝑿𝑿𝒊𝒊) ∗ 𝒍𝒍𝒍𝒍 (𝑿𝑿𝒋𝒋)𝒏𝒏
𝒋𝒋=𝟏𝟏

𝒏𝒏
𝒊𝒊=𝟏𝟏     (16) 

The variables selected for the correlation are important in ensuring its applicability for 

future designs and operating conditions. The correlations should be based on geometry 

variables that are available and operating conditions that are not dependent on fluid 

properties. The Reynold’s number is the preferred dimensionless term to characterize the 

flow as opposed to the dimensioned velocity, which may change with air properties. The 

Reynold’s number based on the collar diameter and maximum, or “core”, velocity was 

selected. This parameter is more representative of the actual flow conditions within the 

heat exchanger as it is affected by the fin geometry parameters that determine the 

minimum free flow area and thus yielded a more accurate correlation.  

The regression models predict source data with a high degree of accuracy, summarized in 

Table 5. Furthermore, the louver fin correlations were verified against a set of randomly 

generated data, not included in the regression models. In 117 random simulations, the 

proposed correlations predicted 93.7% and 83.8% of pressure drops and air-side heat 
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transfer coefficients with 90% accuracy or better, similar to the predictions of the source 

data in Table 5.   

Table 5: Regression accuracy of original CFD correlation 

Fin Type: Slit Fin Louver Fin 
Predicted parameter: ΔP HTC ΔP HTC 

Percentage of data 
with 10% error or less 

98.1% 84.7% 93.1% 84.7% 

Percentage of data 
with 20% error or less 

100% 97% 99.8% 97.4% 

 

4.4.1 Alternate slit pressure drop correlation 

Despite the high quality of the correlations presented in the 2016 work, one shortcoming 

was uncovered after implementing the models into the CoilDesigner environment. 

Although the correlations were not developed for vastly different fin thicknesses and 

should not be interpreted as being broadly applicable for fins with significantly different 

thicknesses, they should be suitable for fins of comparable thickness. When conducting 

simulations with the slit fin correlation, it was observed that air pressure drop values 

decreased as fin thickness increased; this result is contrary to the expected physical result 

and may indicate some flaw in the proposed correlations. A simplified form of the slit fin 

air pressure drop correlation was developed and is outlined in   
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Appendix C: Modified Slit fin DP correlation. This correlation predicts 85.7% and 97.1% 

of CFD source data with 10% and 20% error or less and contains considerably less terms. 

This form is recommended because it shows the correct trend of increasing air pressure 

drop with increasing fin thickness.   



31 
 

5. Experimental validation 

In order to validate the performance of the CFD-based correlations with experimental 

observations, extensive testing was carried out on a representative sample of heat 

exchangers. At the time of writing, heat exchangers with 3 and 4 mm OD tubes were not 

readily available commercially, but 5 mm designs were prevalent. Prototype heat 

exchangers with 5 mm tube diameters were purchased from five manufacturers, each 

with different enhanced fin designs. Dry coil tests were conducted using hot water as the 

working fluid to determine the air-side heat transfer coefficients and pressure drops under 

a range of operating conditions.  

5.1 Test facility 

A closed-loop wind tunnel facility operated by Optimized Thermal Systems, Inc. (OTS) 

was used for heat exchanger testing. Figure 8 shows the schematic of the test facility. Air 

is forced through a closed-loop wind tunnel, it is cooled by a cooling coil and heated by a 

duct heater as needed, and mixed before entering the test section. The duct throughout the 

loop is 36x36” (below M is 36”) and is reduced to the size of the test section, 

approximately 22x22”. The facility was constructed to comply with the requirements of 

the industry-accepted test standards for airflow measurement (ANSI/ASHRAE Standard 

41.2, 1992) and heat exchanger testing (ANSI/ASHRAE Standard 33, 2016). Measures 

were taken to ensure the uniformity of airflow, namely an air mixer and several 

perforated sheets which act as settling means. Water mass flow rate is measured with a 

Coriolis flowmeter and inlet and outlet temperatures are taken with resistive temperature 

devices (RTDs). A differential pressure measurement is taken across the coil on the air-

side and the inlet and outlet temperatures are measured using a grid of thermocouples.  



32 
 

Blower

  Test HX

DP
DP

Hot Buffer Tank Cold Buffer Tank

Mixer

Nozzle(s)

ChillerWater 
Heater

 Pump, VFD
Pump, VFD

  Flowmeter

  Thermocouple Grid

Settling Means

RTD

Cooling Coil

 

Figure 8: Schematic of experimental setup 

Several key considerations were addressed in the construction of the facility to ensure 

compliance with ASHRAE Standard 41.2 (ANSI/ASHRAE, 1992) for air flow 

measurement (Figure 9): 

 

Figure 9: Schematic from ANSI/ASHRAE Standard 41.2 (1992) 
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• Pressure drop across the calibrated nozzle is measured 1.5 inches before and after 

the plane of the nozzle 

• Settling means are installed at least 0.5*M before the nozzle plane and 2.5 times 

the throat diameter of the largest nozzle (7 inch nozzle) from the exit face of the 

largest nozzle 

• J is larger than M (36”) 

• Exiting air dry-bulb temperature is taken with a 9-point thermocouple grid on the 

settling means before the nozzle 

Additional considerations for following Standard 33 for coil testing (ANSI/ASHRAE, 

2016) are listed below and in Figure 10: 

 

Figure 10: Schematic from ANSI/ASHRAE Standard 33 (2016) 

• Entering air dry-bulb temperature is measured using a 9-point thermocouple grid 

approximately 1 inch from the face of the test coil. The thermocouple grid has a 

negligible effect on air-side pressure drop 

• Four static pressure taps are located 12 inches before and after the test coil, to 

measure absolute barometric pressure and pressure drop 
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• Diffusion baffles (settling means) are used before the inlet pressure tap and after 

the outlet pressure tap 

• Air relative humidity is measured before the test coil, after the diffusion baffles, 

and  before the nozzle array 

• An array of nozzles (one 4”, two 5” and one 7”) are oriented based on the 

required clearance 

This facility allows for collection of air-side performance data of the heat exchangers 

with an appropriate degree of accuracy. For several decades, researchers have 

implemented similar experimental setups to collect data for the development of air-side 

heat transfer and pressure drop correlations; the facility and instrumentation closely 

resemble those of Wang et al. (1999) and Kim et al. (1999) among many others.  

5.2 Uncertainty propagation 

Table 6 provides a summary of the equipment used for heat exchanger testing along with 

the published ranges and accuracies of each primary measurement. In addition to 

systematic uncertainties of the measurement equipment, random errors exist within the 

data and can be determined from the standard deviation of values collected for 30 

minutes at steady state for each measurement.  
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Table 6: Instrumentation and systematic uncertainties 

Measurement Type Model # Range Accuracy 

Air 
Temperature Thermocouple Omega TT-T-24-SLE-

100 
-200 - 
200oC 

±0.5 K 
(0.17 K for 

9-point 
grid) 

Air Relative 
Humidity 

Relative 
Humidity Dwyer RHP-2D11 0-100% ±2% 

Air Pressure Barometric 
Pressure 

Setra 
2701800MA1F2B02N 

800-1100 
mbar ±0.55 mbar 

Nozzle 
Pressure Drop 

Differential 
Pressure Setra 2641005WD11A1F 0-1245 

Pa ±3.1 Pa 

Coil Pressure 
Drop 

Differential 
Pressure Setra 2641001WD11A1F 0-249 Pa ±0.6 Pa 

Refrigerant 
Temperature RTD Omega P-M-1/10-1/4-6-

0-P-15 
-100oC – 

400oC ±0.03 K 

Refrigerant 
Mass Flow 
Rate 

Coriolis Flow 
Meter 

Micromotion 
R050S239NQBMEZYZZ 0-150 g/s ±0.5% of 

reading 

Refrigerant 
Pressure 

Absolute 
Pressure Omega PX409-750AI 0-5170 

kPa ±4.1 kPa 

For each measurement, the systematic and random uncertainties should be added because 

the observed value can be as much as the sum of the maxes of these two types of 

uncertainty. The two key parameters output by this research are the air-side pressure drop 

and the air-side heat transfer coefficient. While the air-side pressure drop is observed 

directly, the heat transfer coefficient must be determined from the combination of several 

measurements. Generally, the classical approach defined by Kline et al. (1953), and 

summarized in equation (17), is followed to propagate uncertainties in the calculation of 

the key output quantities. However, because the heat transfer coefficient is determined 

through external software, as later described in section 5.5.3, the partial derivatives must 

be taken numerically within the CoilDesigner data reduction tool.  

𝑤𝑤𝑅𝑅 =  ��𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣1

𝑤𝑤1�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕2
𝑤𝑤2�

2
… � 𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣𝑛𝑛
𝑤𝑤𝑛𝑛�

2
      (17) 
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Example systematic and random uncertainties for each measurement used in the 

calculation of the air-side pressure drop and heat transfer coefficient are listed in Table 7. 

These values are obtained from test data for coil #1, but the random uncertainties are 

comparable for all other tests. The average value and uncertainties of some secondary 

quantities including air flowrate and capacity are calculated using Engineering Equation 

Solver (Klein, 2017) and to propagate the uncertainties of all instruments used in their 

calculation.  After numerically calculating the derivatives and propagating the results for 

this example, the overall uncertainty in air-side pressure drop is determined to be ±1.78Pa 

or 1.68% and the heat transfer coefficient has an uncertainty of ±2.5 W/m2K or 2.42% 

when using the tube-side heatload and 4.72% when using the average heatload.  

Table 7: Typical measurement uncertainties: Coil #1, test point 4 

Measurement  
[units] 

Mean 
Value 

Systematic 
Uncertainty 

Random 
Uncertainty 

Total 
Uncertainty / 
(average of 9 

measurements) 

Total 
Relative 

Uncertainty 
[%] 

Air Pressure 
Drop [Pa] 105.77 0.623 1.157 1.780 1.68 
T air out [°C] 25.27 0.500 0.046 0.546 (0.182) 2.16 (0.72) 
Nozzle RH 
[%] 43.41 0.500 0.063 0.563 1.30 
Nozzle ΔP [Pa] 224.99 3.125 2.976 6.101 2.71 
Air flowrate 
[m3/s] 0.97 - - 0.0132 1.36 
RTD Water in 
[°C] 50.04 0.030 0.038 0.068 0.14 
RTD Water 
out [°C] 23.96 0.030 0.046 0.076 0.32 
Mass flowrate 
water [g/s] 97.00 0.291 0.048 0.339 0.35 
Air RH in [%] 78.53 - - 1.735 2.21 
Air T in [°C] 16.11 0.500 0.056 0.556 (0.185) 3.45 (1.15) 
Qair [kW] 10.65 - - 0.329 3.09 
Qwater [kW] 10.59 - - 0.056 0.53 
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As is later discussed in Section 5.5.3, the data reduction to determine air-side HTC can be 

performed based on the average heat load (both tube- and air-side) or only on the tube-

side. After performing the numerical uncertainty propagation using both techniques, the 

results were found to be comparable as shown in the examples in Table 8, however, the 

average heatload is used to determine HTC in final results presented in this thesis. The 

reason why one technique does not always produce lower uncertainty than another is 

because the uncertainties of individual measurements can change significantly across 

different operating conditions. For example, the uncertainty of the air flow rate can 

sometimes be higher at high air flow rates depending on the diameter of nozzles and 

range (switchable) of the differential pressure transducer used for air flow measurement; 

in such cases, the overall uncertainty in HTC suffers when using the average capacity due 

to the introduction of this less certain term. In some scenarios with low air flow rates, 

where just one small nozzle is used for flow measurement and the pressure drop is low, 

the air flow uncertainty is lower and its inclusion in the air-side HTC calculation 

improves the overall confidence. Ultimately, both approaches produce acceptable results 

and the choice to use the average heat load was made at the recommendation of existing 

literature (Wang et al., 2000). When using tube-side heat load only, the sample analyses 

show that the highest uncertainty in air-side HTC occurs in the tests with the lowest 

HTCs and flow rates. This finding is intuitive because the primary contributors to 

uncertainty are the inlet and outlet temperature measurements; when air flow is low and 

water flow is high, the water temperature difference is small and the uncertainty is 

greater. Conversely, the averaging approach yields a higher uncertainty at high air flow 

rates due to the nature of the air flow rate measurement. The use of the average heat load 
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is also preferred because some numerical issues can arise when using only the tube-side 

heat load. In some instances, the use of refrigerant heat load to calculate HTC resulted in 

a very high sensitivity to refrigerant outlet temperature which led to cases where an 

impossibly large HTC value was required to replicate the reported refrigerant outlet state. 

Often, when using refrigerant heat load to determine HTC, the data reduction procedure 

yielded very different air HTCs at constant air velocity. These issues were avoided by 

using the average heat load to calculate air-side HTC.  

Table 8: HTC uncertainties in Coil #1 tests 

Air 
frontal 
velocity 
[m/s] 

Refrigerant 
flow rate 

[g/s] 

Average air 
HTC  (using 

tube-side / avg. 
heat load) 
[W/m2K] 

HTC 
uncertainty  
(tube-side 
heat load) 
[W/m2K] 

HTC 
uncertainty 

% (tube-
side heat 

load) 

HTC 
uncertainty  
(avg. heat 

load) 
[W/m2K] 

HTC 
uncertainty 

% (avg.  
heat load) 

3.80 97.0 102.84/101.52 2.49 2.42 4.79 4.72 
1.05 97.0 69.87/71.54 3.58 5.13 1.69 2.35 

 

5.3 Prototype heat exchangers 

Heat exchangers were designed specifically for operation within the OTS wind tunnel 

and were purchased after coordinating with several manufacturers in China, India, and 

the United States. The goal of the prototype selection was to ensure that at least two 

different slit fin and two louver fin patterns were included, each with at least two 

different fin densities and two different numbers of tube rows in the airflow direction. In 

order to minimize edge effects, it was decided that each coil must have at least 20 tubes 

in the transverse direction.  
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Table 9 and Table 10 contain all geometric details of the slit- and louver-fin prototype 

coils, respectively. The finned lengths of all heat exchangers are designed to ensure that 

all coils have equivalent face area. All prototype heat exchangers for air-side testing were 

constructed using smooth (not internally-enhanced) copper tubes to produce predictable 

water-side performance and allow for accurate data reduction of air-side heat transfer 

coefficients. Additional heat exchangers with internally-enhanced tubes were also 

procured for two-phase refrigerant testing. Final inspection of all delivered coils 

confirmed that all heat exchangers were built within the provide specifications to an 

acceptable level of quality. Actual measurements of dimensions, including averaged 

values of fin density deviate only slightly from the original specifications but are 

provided in the tables below.  
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Table 9: Sample slit fin heat exchangers 

PN Manufacturer 
Tube 
OD 

[mm] 

Pl 
[mm] 

Pt 
[mm] Banks Circuits 

Tubes 
Per 

Bank 

FPI 
[-

/in] 

Finned 
length 
[mm] 

Coil 
height 
[mm] 

Coil 
Depth 
[mm] 

Fin 
thickness 

[mm] 

Slit 
height 
[mm] 

Slit 
width 
[mm] 

Number 
of slits 

1 1 5.2 11.60 19.50 2 2 24 23.2 534.19 468.00 23.20 0.105 0.7 1.00 5 
2 1 5.2 11.60 19.50 1 2 24 23.4 534.19 468.00 11.60 0.105 0.7 1.00 5 
3 1 5.2 11.60 19.50 2 2 24 16.9 534.19 468.00 23.20 0.105 0.7 1.00 5 
4 1 5.2 11.60 19.50 1 2 24 17.9 534.19 468.00 11.60 0.105 0.7 1.00 5 
5 2 5.2 13.86 16.00 1 2 30 22.0 520.83 480.00 13.86 0.098 0.5 1.00 5 
6 2 5.2 13.86 16.00 2 3 30 22.0 520.83 480.00 27.72 0.098 0.5 1.00 5 
7 2 5.2 13.86 16.00 1 2 30 29.8 520.83 480.00 13.86 0.098 0.5 1.00 5 
8 2 5.2 13.86 16.00 2 3 30 29.8 520.83 480.00 27.72 0.098 0.5 1.00 5 

 

Table 10: Sample louver fin heat exchangers 

PN Manufacturer 
Tube 
OD 

[mm] 

Pl 
[mm] 

Pt 
[mm] Banks Circuits 

Tubes 
Per 

Bank 

FPI 
[-

/in] 

Finned 
length 
[mm] 

Coil 
height 
[mm] 

Coil 
Depth 
[mm] 

Fin 
thickness 

[mm] 

Louver 
pitch 
[mm] 

Louver 
height 
[mm] 

Number 
of 

louvers 
9 3 5.2 16.50 19.05 1 2 24 15.1 546.81 457.20 16.5 0.100 1.67 1.00 6 
10 3 5.2 16.50 19.05 2 2 24 15.1 546.81 457.20 33.0 0.100 1.67 1.00 6 
11 3 5.2 16.50 19.05 1 2 24 20.1 546.81 457.20 16.5 0.100 1.67 1.00 6 
12 3 5.2 16.50 19.05 2 2 24 20.3 546.81 457.20 33.0 0.100 1.67 1.00 6 
13 4 5.2 13.60 19.00 2 2 24 21.0 548.25 456.00 27.2 0.095 1.20 0.66 4 
14 5 5.2 10.90 21.00 1 2 24 19.1 496.03 504.00 10.9 0.095 1.30 0.80 4 
15 4 5.2 13.60 19.00 2 2 24 19.5 548.25 456.00 27.2 0.095 1.20 0.66 4 
16 5 5.2 10.90 21.00 1 2 24 18.5 496.03 504.00 10.9 0.095 1.30 0.80 4 
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5.4 Test matrix 

Testing was performed under a range of operating conditions in order to determine 

accurate air-side heat transfer coefficients under a range of air velocities. Air velocities 

range from approximately 1 to 4 m/s, which is typical of heat exchangers of this type in 

many HVAC&R applications. Other conditions of the experiments must be controlled to 

ensure that heat transfer coefficients can be accurately determined. As indicated by Wang 

et al. (2000b), at least a 2°C ΔT is required on the water side and water Reynold’s 

numbers should be sufficiently high to produce a water-side resistance which is much 

smaller than the air-side resistance. Table 11 shows a summary of the test matrix for air-

side testing; the variation of air and water velocities allows for the determination of air-

side heat transfer coefficients across a wide range of air velocities. Typical water mass 

flux values range from approximately 1,550 to 4,600 kg/m2s and Reynolds numbers 

range from 12,000 to 37,000. These test conditions ensure fully turbulent flow within the 

tubes which allows for more accurate water HTC predictions and subsequently more 

accurate air-side HTC calculations. 

Table 11: Coil test matrix 

Test 
no. 

Air velocity 
[m/s] 

Water flow rate 
[g/s] 

Air Inlet Temp 
[°C] 

Water Inlet 
Temp [°C] 

1 1 70~80 16 50 
2 1 70~90 16 50 
3 1 90~140 16 50 
4 2.5 70~80 16 50 
5 2.5 70~90 16 50 
6 2.5 90~140 16 50 
7 4 70~80 16 50 
8 4 70~90 16 50 
9 4 90~140 16 50 
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5.5 Data reduction 

While observations of air-side pressure drop are directly made using a differential 

pressure transducer, the calculation of the air-side heat transfer coefficient relies on a data 

reduction technique to approximate the average convective heat transfer coefficient from 

primary measurements of temperatures and flowrates. Several techniques, summarized in 

section 3.4, have been used in the industry to determine heat transfer coefficients from 

experimental data. Throughout the course of this effort, these different techniques were 

used and compared in order to verify their accuracy and select the best approach.  

5.5.1 Wilson plot method 

The original Wilson plot method was implemented on a sample heat exchanger to assess 

its suitability for this application (Wilson, 1915) . The desirable feature of the original 

method is that it does not require knowledge of the heat transfer performance of either 

fluid to determine the heat transfer coefficients. However, without knowledge of the tube-

side heat transfer, the fitting approach is somewhat rudimentary and can lead to highly 

uncertain results.  

Figure 11 and Figure 12 show the Wilson plots for one sample heat exchanger tested in 

this study with two different fitting parameters of 0.82 (originally assumed by Wilson in 

1915) and 1.0 (shown for the sake of illustration). It is evident that both parameters allow 

for a satisfactory linear fit of the data, however, the fitting parameter of 1.0 yields a 

slightly greater R2 value for all series. While the difference in the quality of fit and the 

values of the intercepts may appear marginal, the resulting air-side heat transfer 

coefficients are quite different from one another, differing by nearly 50% in one case (as 

summarized in Table 12).  
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Figure 11: Original Wilson plot method with n=0.82 

 

Figure 12: Original Wilson plot method with n=1 
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Table 12: Overall air HTCs (η*ho) determined by original Wilson plot method 

Air frontal velocity [m/s] Wilson plot with n=0.82 
[W/m2K] 

Wilson plot with n=1 
[W/m2K] 

2.5 77.7 113.9 
3.9  109.0 126.2 
1.0 98.5 90.1 

 

5.5.2 Wang ε-NTU method 

As discussed previously, further modifications were made to the Wilson plot method, 

which utilized a functional form, or correlation, for the refrigerant-side heat transfer 

coefficient. Beyond this improvement, Wang et al. (2000b) outlined a technique for 

determining air-side heat transfer coefficients from experimental data using ε-NTU 

relations. In this approach, the Gnielinski correlation for single-phase in-tube heat 

transfer (Gnielinski, 1976) is used along with details of the heat exchanger geometry in 

order to determine the air-side heat transfer coefficients. A thorough study of this 

approach was conducted for several heat exchangers. The following section describes the 

data reduction approach using CoilDesigner to back-calculate heat transfer coefficients 

using a detailed finite-volume model of each heat exchanger. Using the experimental data 

for Coils #2 and #5, the data reduction approach proposed by Wang and the CoilDesigner 

approach were compared. While the approach from Wang uses approximate NTU 

relations, the CoilDesigner approach accounts for the actual details of the coil geometry 

and circuitry. The results in Figure 13 show that both approaches produce nearly identical 

values of heat transfer coefficient, thereby adding confidence to the selected method. This 

result also indicates that, at least in these cases of simple cross-counterflow geometries, 

the NTU method is quite accurate at expressing heat exchanger performance and is 

comparable with a more complex model. The same studies were conducted replacing the 
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Gnielinski correlation, recommended by Wang, with the more recent AHRI standard 

correlations (AHRI, 2001). As might be expected, the results are nearly identical as 

shown in Figure 14. Figure 15 shows that when using these calculated values of heat 

transfer coefficient from the experiments, both techniques predict an overall capacity that 

matches well with the experimental value. 

 

Figure 13: Comparison of data reduction techniques, both using Gnielinski 
correlation for refrigerant heat transfer 
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Figure 14: Comparison of data reduction techniques, using AHRI correlation for 
refrigerant heat transfer 
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Figure 15: Comparison of predicted capacities using two data reduction techniques 
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for the air-side heat transfer coefficient that will produce the results observed 

experimentally. The tool also calculates non-dimensional terms including j, f, and several 

variations of Reynolds number; the result is a very convenient environment for quickly 

determining heat transfer coefficients that allow simulation results to match experimental 

findings.  

The tool was utilized to deduce the air-side heat transfer coefficients, j, and f factors from 

144 experimental observations. It was decided that data reduction should be conducted 

using the average heat load, as opposed to the tube-side capacity only. Using these exact 

values of air-side heat transfer coefficients within each CoilDesigner simulation can 

reliably reproduce the observed outlet conditions. In section 6.3.3, a similar technique is 

employed to iteratively solve for the heat transfer coefficient in the model, including 

effects of fin conduction, that replicates the observed capacity. 

5.5.4 Experimental results 

Following the above data reduction procedure, a satisfactory dataset was produced from 

the experimental results. Figure 18 shows the j and f factors plotted against Reynolds 

number for slit fin coils and Figure 19 shows the same plot for louver fin coils.  
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Figure 16: j and f factors for slit fin heat exchanger experiments 
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Figure 17: j and j factors for louver fin heat exchanger experiments 
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HVAC and refrigeration applications, respectively. Additionally, R-407C was tested due 

to its large temperature glide. These refrigerant tests were conducted to ensure that the 

new air-side correlations, along with existing refrigerant-side correlations could produce 

accurate predictions of the overall heat exchanger performance. Particularly, it is 

important to ensure that the overall capacity, refrigerant pressure drop, and degree of 

subcooling/superheat can be predicted accurately when designing heat exchangers for 

real applications. Table 13 shows the test conditions chosen for refrigerant-side 

validation. The test matrix includes multiple values of air velocity, refrigerant saturation 

temperature, and refrigerant mass flow rate, to evaluate the range of applicability of the 

proposed correlations across many applications. This test matrix of 12 points was 

repeated for each of the three refrigerants, R-410A, R-404A, and R-407C.  

Table 13: Refrigerant-side test matrix 

Test number Air velocity [m/s] Refrigerant 
saturation 

temperature [K] 

Degree subcooling 
[K] 

1 1.5 318 5 
2 1.5 318 10 
3 1.5 318 15 
4 1.5 321 5 
5 1.5 321 10 
6 1.5 321 15 
7 4 318 5 
8 4 318 10 
9 4 318 15 
10 4 321 5 
11 4 321 10 
12 4 321 15 
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6. Results and correlation development 

With complete datasets from both CFD simulations and experimentation, it is desirable to 

generalize these findings through the use of correlations for air-side heat transfer and 

pressure drop.  In the following sections, the experimental results are compared against 

predictions made by existing correlations from the literature (developed for larger 

diameter tubes), the originally published CFD-based correlations (Sarpotdar et al., 2016a,  

2016b), and several new models.  

6.1 Accuracy of existing correlations 

This research was prefaced with a perceived need for new correlations due to the lack of 

available correlations developed for tube-fin heat exchangers with diameters of 5 mm and 

less. Existing correlations for slit and louver fins have been developed by Wang et al., 

(2001, 1999), but these models included experimental data for designs having diameters 

of 7.52 and 6.9 mm and greater respectively. The following figures compare the 

predictions of the correlations by Wang et al. against the experimental results from this 

study.  

Figure 18 and Figure 19 show comparisons of the air-side pressure drop and heat transfer 

coefficient prediction versus experimental results for the louver fin heat exchangers 

tested in this study. The results show that existing correlation (Wang et al., 1999) for 

pressure drop can predict 15% of the experimental data with ±10% error or less and 57% 

of the data with ±20% error or less. The same author’s correlation can predict the heat 

transfer coefficient within ±20% error for 25% of the data points.  
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Figure 18: Predicted (Wang et al., 1999) versus experimental air pressure drop for 
louver fin heat exchangers 
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Figure 19: Predicted (Wang et al., 1999) versus experimental air heat transfer 
coefficient for louver fin heat exchangers 
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In general, the existing correlations from Wang et al. do not provide satisfactory accuracy 

for predicting the performance of the observed 5 mm OD heat exchangers.  

 

Figure 20: Predicted (Wang et al., 2001) versus experimental air-side pressure drop 
for slit fin heat exchangers 
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Figure 21: Predicted (Wang et al., 2001) versus experimental air-side heat transfer 
coefficient for slit fin heat exchangers 
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to predict the experimentally-observed performance of 5 mm heat exchangers within this 

study.  

Figure 22 and Figure 23 show the predictions (using the original CFD-based correlations) 

and experimental results for the louver fin heat exchangers. The air pressure drop 

correlation predicts the data well without any modifications; 57% of the points are 

predicted with 10% error or less and 100% of the data are predicted with 20% error or 

less. The heat transfer coefficient correlation, without alteration, predicts only 43% of the 

experimental data within 20% or less error. However, it should not be expected that CFD 

results will exactly match the observed experimental heat transfer. A single correction 

factor of 0.793 was determined via least squares regression; when applied to all 

predictions, the heat transfer coefficient correlation can predict 63% of the experimental 

data with 10% error or less and 99% with 20% error or less. A minor correction factor of 

0.984 applied to the air pressure drop correlation improves the fit such that 68% of the 

data is predicted with 10% error or less.  
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Figure 22: Predicted (Sarpotdar et al., 2016a) versus experimental air pressure drop 
for louver fin heat exchangers 
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Figure 23: Predicted (Sarpotdar et al., 2016a) versus experimental air-side heat 
transfer coefficient for louver fin heat exchangers 
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without any modification. With a correction factor of 0.834 applied, the correlation can 

predict 92% and 100% of the data with 10% and 20% error or less, respectively.  

 

Figure 24: Predicted (modified correlation from Appendix C) versus experimental 
air pressure drop for slit fin heat exchangers 
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42% and 50% of the data points with 10% and 20% error or less, respectively.  

 

Figure 25:Predicted (Sarpotdar et al., 2016b) versus initial experimental air heat 
transfer coefficient for slit fin heat exchangers 
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are not well-predicted by the correlation. Additional steps were taken to understand the 

cause of these discrepancies and determine if the differences were a result of flaws in the 

correlation, experiments, or both.  

6.3.1 Kriging methodology 

In order to demonstrate a high-accuracy fitting technique, a model was developed using 

Kriging to interpolate air-side pressure drops and heat transfer coefficients from the CFD 

source data. This model is inherently able to reproduce all source data exactly, and is also 

able to reproduce random results (which it was not trained on) with greater accuracy than 

the linear regression models presented in previous work. Practical considerations make 

the implementation of a Kriging model difficult in heat exchanger simulation software, 

but the results are presented to demonstrate the existence of a more accurate fitting 

technique. The DACE toolbox for MATLAB was used to develop the model shown 

below for slit fin pressure drop and heat transfer coefficient (Lophaven et al., 2002).  

The model was fitted to the natural log of the parameters listed in Table 14 using second-

order polynomial regression and spherical correlation functions; the resulting sigma2 

values for log(f) and log(j) were 0.0014 and 0.0032. This model can predict the randomly 

generated CFD data well, as summarized in Table 15. When used to predict experimental 

data, the model is more accurate than the regression, but the experimental data are still 

not as well-matched as the CFD simulations (here the MASXX terminology is used to 

indicate the percentage of points predicted within XX% error or less). This evidence 

supports the conclusion that the CFD-based HTC correlation (regression-based) is not the 

source of the errors; instead, there may be flaws in the CFD simulation results and/or the 

experiments.  
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Table 14: Fitting parameters for Kriging model 

Variable Dc Pl Pt N Sh Ns Fp ReDc,Vmax 

Theta 1 5.14 10.56 0.18 0.14 0.11 0.065 103.07 

 

Table 15: Kriging model performance for slit fin heat exchangers 

 MAS5 MAS10 MAS20 
Random CFD ΔP 80.6% 94.6% 98.9% 
Random CFD HTC 75.3% 96.8% 98.9% 
Experimental ΔP* 45.8% 87.5% 100% 
Experimental HTC** 16.7% 37.5% 58.3% 

*after application of 0.884 
**after application of 0.574 correction factor 

 

The Kriging approach was also used to examine the impact the number of source data 

points on the overall performance of the correlation. Separate Kriging models were 

developed using less than the total number of source data points simulated within CFD. 

The total slit fin dataset used for Kriging contains a total of 872 points after removing 

infeasible designs and designs with small temperature differences where “pinching” may 

occur. Reducing the design space to use only the feasible full-factorial designs and 500 

Latin hypercube samples results in a correlation with greater error in predicting the 

random data set, however the agreement is still very good, as shown in Table 16 and 

Table 17. Reducing the number of Latin hypercube (LHC) samples to 200 yields further 

degradation of the model performance, but the results may still be satisfactory in a 

number of applications. These findings indicate that the number of CFD simulations 

conducted may have been excessive and a lesser number of runs could have characterized 

performance within the design space with comparable accuracy. This is particularly 

important due to the high computational cost of CFD simulations. 
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Table 16: Performance comparison of slit fin Kriging models for j factor 

 MAS5 MAS10 MAS20 
738 LHC samples 75.3% 96.8% 98.9% 
500 LHC samples 65.6% 93.5% 98.9% 
200 LHC samples 52.7% 75.3% 98.9% 

 

Table 17: Performance comparison of slit fin Kriging models for f factor 

 MAS5 MAS10 MAS20 
738 LHC samples 80.6% 94.6% 98.9% 
500 LHC samples 72.0% 94.6% 98.9% 
200 LHC samples 65.6% 94.6% 98.9% 

 

6.3.2 Alternate correlation forms 

The level of fit achieved by the correlations shown above is still not satisfactory for the 

slit fin heat transfer coefficient predictions. Using experimental data only, a new 

correlation for j factor was developed using the form proposed by Wang et al. (2001). 

The form of this equation is presented in equations (18-22) and separate coefficients are 

prepared for 1 row and 2 row coils and summarized in Table 18. The resulting 

correlations can predict the 1 and 2 row coil j factors as described in Table 19.  
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Table 18: Coefficients for experimental slit fin correlation 

Coefficient number Fitted for 1 row coils Fitted for 2 row coils 
4 1.069788 1.069084 
14 -0.52982 -0.53512 
15 -0.04054 0.016804 
16 -0.00552 -0.01094 
17 0.405993 0.411528 
18 5.576799 5.575592 
19 24.20262 24.2028 
20 0.270963 0.264593 
21 1.063362 1.049096 
22 -0.13354 -0.21602 
23 0.3749 0.374888 
24 0.0046 0.001932 
25 -0.0433 -0.04368 

 

Table 19: Performance of modified Wang correlation for slit fin heat transfer 
coefficient 

Data points within XX% error  1 row coils 2 row coils 
5% 72% 25% 
10% 100% 49% 
20% 100% 66% 

 

The correlation form presented by Wang appears to provide a satisfactory fit for the 

tested heat exchangers, especially for 1 row coils. It was necessary to develop two 

separate correlations for 1 and 2 row coils because a combined correlation had very poor 

accuracy. The poor level of fit that is achieved for 2-row heat exchangers raises 

suspicions about the accuracy of experimental results for these heat exchangers.  

6.3.3 Fin conduction 

Another important phenomenon was identified in further analysis of the slit fin 

experimental results. The data reduction approach was repeated after enabling 

CoilDesigner’s fin conduction model (Singh, 2009),. This solver allows for the 
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calculation of conductive heat transfer along fins between adjacent tubes and was 

validated against experimental data. It was observed that the air HTC calculated using the 

fin conduction solver differed from the HTC calculated using the standard “fast” solver in 

some cases. Examining these differences further led to additional insights.  

Test #1 for coil #8 is taken as an example to illustrate this point. In this case, with an air 

velocity of 3.65 m/s, the proposed CFD-based correlation predicts an air-side HTC of 

250.5 W/m2K, but initial experiments suggested an observed HTC of just 104.9 W/m2K. 

However, closer examination reveals that the large refrigerant ΔT between inlet and 

outlets of the counterflow circuitry and the high density of fins, result in significant 

conductive heat transfer from tube to tube along the fins. Figure 26 shows the 

counterflow circuitry and Figure 27 shows the average tube temperature along each of the 

three circuits, calculated using the CoilDesigner conduction solver. The figure shows that 

the tubes in the first row of the coil (at the ends of the circuits) are actually increasing in 

water temperature, due to this conduction effect. The large temperature difference 

between rows can result in more than 300 W of heat entering some individual tubes in the 

first row solely through conduction, reducing the net heat transfer in the first row and in 

some cases creating tubes that have a net positive heat gain as shown in Figure 28.  
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Figure 26: Counterflow circuitry with conductive heat transfer between banks 

 

Figure 27: Average water temperature calculated using CoilDesigner conduction 
solver (Coil #8, Test #1) 
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Figure 28: Net heat transfer by tube using CoilDesigner conduction solver (Coil #8, 
Test #1) 

When data reduction is carried out using these results, the total heat rejection of the coil 

is attributed to the entire surface area of the heat exchanger, but because much of the first 
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suitable for determining air-side heat transfer coefficients. Steps should be taken to 

identify and avoid these conditions when testing heat exchangers to determine air-side 
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resistance to the extent possible. The tests which were conducted utilized the maximum 

mass flow rate of the water pump to accomplish this, however, Section 6.3.3 indicated the 

insufficiency of the existing experimental setup to provide suitable experimental results 

for air-side data reduction. In the time since the initial testing conducted for this work, a 

larger water pump was acquired at the test facility and was utilized for limited repeat 

testing of coils where results were unsatisfactory.  

It was first necessary to identify which heat exchanger tests were affected by this issue. 

By repeating data reduction with and without the fin conduction model, the most 

problematic tests could be identified; if the air-side HTC calculated with conduction was 

significantly different than the value without conduction, then this was taken as an 

indication that the initial test could be flawed. Analysis showed that the two-row slit fin 

heat exchangers were affected by this phenomenon due to their counterflow circuitry.  

In order to demonstrate the effect of fin conduction on determining air-side HTCs, testing 

was repeated under conditions with nearly an order of magnitude higher water flow rates. 

This required the implementation of a new water pump, the addition of one Coriolis flow 

meter, and the modification of coil circuitries. Coils with 24 tubes and 2 circuits were 

modified to contain 12 circuits and coils with 30 tubes and 3 circuits were modified to 

contain 15 circuits. The new test conditions and circuitries significantly reduced the 

temperature difference between inlet and outlet tubes and the subsequent fin conduction 

between banks; this led to observations of higher HTCs for two-row coils than were 

previously possible with the original equipment and instrumentation.  

Coils 1, 3, 4, 6, and 8 were re-tested with water flow rates of 0.8, 0.9, and 1.0 kg/s. The 

results showed significantly higher HTCs for the re-tested 2-row coils, while the 1-row 
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coil’s HTC was nearly the same. The unmodified correlation significantly over-predicts 

HTC performance for all tests, but less so for coils 5-8. By applying a 0.678 correction 

factor to the HTC correlation, 25% of the HTC data can be predicted with 10% error or 

less and 86% of the results can be predicted with 20% error or less.   Figure 29 shows the 

experimental HTCs plotted against the correlation predictions with and without the 

correction factor applied.  

 

Figure 29:Predicted (Sarpotdar et al., 2016b) versus experimental air heat transfer 
coefficient for slit fin heat exchangers (including repeated tests) 
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6.4 Proposed new correlations 

6.4.1 Louver fin 

The analysis in section 6.2 and summary in Table 20 demonstrate the high degree of 

accuracy of predictions made by the CFD-based correlation when validated against 

experimental tests. The air pressure drop correlation is able to predict 68% and 100% of 

observed air pressure drop data with 10% and 20% error or less, respectively with the 

application of a 0.984 correction factor. A single correction factor of 0.776 applied to the 

air-side HTC correlation results in model predictions that match 58% and 100% of 

experimental data within 10 and 20%, respectively. These correlations provide 

satisfactory predictions of air-side performance for louver fin heat exchangers and the 

previously-published correlations (Sarpotdar et al., 2016a) are recommended for future 

use (with the addition of the recommended correction factors).  

It should be noted that the discussion of fin conduction in section 6.3.3 is also applicable 

to the louver fin heat exchangers. The air-side HTCs were calculated for the louver fin 

test results using the fin conduction model; the calculated HTCs were nearly identical to 

the original results without the fin conduction model with the exception of coils 13 and 

15. These heat exchangers had significantly different values of HTC when accounting for 

fin conduction. Re-testing these heat exchangers was not possible at the time of 

publication; if they are omitted from the experimental dataset, the correction factor 

becomes 0.816 and can predict 78% of the remaining data with 10% error or less and 

100% of the data with 20% error or less. 

Although heat exchangers with 3 mm and 4 mm tube diameters were not tested in this 

study, the performance of these correlations is expected to be similar across the entire 3-5 
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mm design space that was evaluated. While it cannot be confirmed until more testing of 3 

and 4 mm heat exchangers is completed, it should be expected that these correlations can 

be used reliably to predict the performance of these designs.  

6.4.2 Slit fin 

As was observed for the louver fin, the tuned slit fin air-side pressure drop correlations 

developed from CFD simulations show excellent agreement with experimental 

observations, predicting 92% and 100% of experimental data with 10% and 20% error or 

less, respectively. A correction factor of 0.834 was required to achieve this level of fit 

and the modified correlation proposed in Appendix C can be recommended.  

After retesting a sample of heat exchangers, the air-side heat transfer correlation was able 

to predict 25% and 86% of the HTC data with 10% and 20% error or less. A correction 

factor of 0.678 is recommended based on the completed 5 mm heat exchanger testing. 

Experimental results matched much more closely with observations for coils 5-8 than 

coils 1-4. The results show a substantial diversity in the performance of slit fin heat 

exchangers; coils 5-8 differ from the correlation by an average of 23%, while the average 

HTCs of coils 1-4 are nearly 43% lower than the predictions. It is possible that 

differences or defects in the manufacturing of some of these coils could be inhibiting 

their performance. 

Table 20 shows the summary of the prediction accuracy of the correlations examined in 

this section. These findings are noteworthy because they show that models which were 

developed solely based on CFD simulations as source data are able to predict 

experimental observations in slit and louver fin heat exchangers with minimal 
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modification or tuning. Table 21 summarizes the correction factors recommended to 

minimize errors in predicting the experimental findings in this work. 

Table 20: Summary of correlation predictions of experimental data 

Correlation % Air HTC 
data 

predicted 
within 10% 

% Air HTC 
data 

predicted 
within 20% 

% Air ΔP 
data 

predicted 
within 10% 

% Air ΔP 
data 

predicted 
within 20% 

Louver fin (Wang 
et al., 1999) 

11.1 25.0 15.3 56.9 

Louver fin 
(Sarpotdar et al., 
2016a)* 

62.5 98.6 68.1 100.0 

Slit fin (Wang et 
al., 2001) ** 

33.3 56.9 0.0 4.2 

Slit fin (Sarpotdar 
et al., 2016b)*, ** 

25.0 86.1 91.7 100.0 

*after application of correction factor 
**results after re-testing  

Table 21: Recommended correction factors (conventional data reduction) 

Correlation Recommended HTC 
Correction Factor 

Recommended ΔP 
Correction Factor 

Louver fin (Sarpotdar et al., 
2016a) 

0.793 0.984 

Slit fin (Sarpotdar et al., 
2016b) 

0.678 0.834 

 

6.4.3 Data reduction including conduction effects 

The analysis in section 6.3.3 illustrates the potential significance of conduction effects in 

calculating the heat transfer coefficient in some test conditions. An alternative approach 

to performing data reduction was implemented by iteratively solving for the value of air-

side HTC that reproduces the observed average capacity from each experiment within a 

CoilDesigner model that includes fin conduction effects. For most data points, the HTC 

computed from this approach does not differ from the original value calculated neglecting 
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conduction effects by a substantial margin. However, the results are consistently 

different, indicating that the HTC, when accounting for conduction effects, does differ 

from the value calculated from the original CoilDesigner data reduction approach or even 

the simpler ε-NTU-based method described by Wang et al. (2000). Data reduction was 

repeated for all test points (following the re-testing of slit fin coils described in section 

6.3.4) and Figure 30 shows a comparison of the HTCs calculated with the fin conduction 

model versus the previous values without fin conduction. Also included in the plot are the 

outlier results of coil 13 and 15 which exhibited significant conduction effects which 

produced poor reduced data, yet re-tests could not be conducted.  

 

Figure 30: HTC calculated including conduction effects versus HTC calculated 
neglecting fin conduction 
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When seeking a correction factor for the heat transfer correlations, the prospect of 

applying a single correction factor to both correlations was evaluated. One major 

contributor to the deviation between CFD predictions and observed heat transfer 

performance is likely the thermal contact resistance between fin and tube. El Sherbini et 

al. (2003) summarized past research on thermal contact resistance in tube and fin heat 

exchangers and highlighted several publications that reported that fin contact resistance 

could contribute between roughly 10 and 50% of the overall thermal resistance of the 

studied heat exchangers. While it is a difficult quantity to measure directly, it is clear that 

contact resistance between fin and tube can contribute significantly to a heat exchanger’s 

overall thermal resistance and the magnitude of this effect can vary depending on the 

quality of materials and manufacturing processes. Figure 31 shows a simple thermal 

circuit representation of the heat exchanger. The CFD-based correlation development 

approach lacks any modeling to predict the thermal contact resistance between fin and 

tube, and through experimental validation, this quantity is effectively incorporated into 

the correction factor applied to the CFD-based correlation. Because of different 

manufacturing processes and quality standards, it is possible that the heat exchangers 

tested as part of this effort had varying levels of contact resistance. It is proposed here 

that a single correction factor can be applied to both the louver and slit fin datasets to 

minimize the error in both. This correction factor would seek to express the average 

deviation between CFD prediction and observed heat transfer regardless of fin 

enhancement type.  
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Figure 31: Simplified thermal circuit 
 

Again, least squares regression was used to determine the value of correction factor that 

minimizes errors between the predicted HTC and observed HTC (calculated from this 

approach). A correction factor of 0.84 was found to minimize errors. When all slit and 

louver data points are included, 61% of points are predicted with 20% error or less and 

49% of points are predicted with 10% error or less. However, coils 13 and 15 are clear 

outliers that should be re-tested when possible in future work. Coils 1-4 are also clearly 

outliers and may suffer from high thermal contact resistance between fin and tube due to 

manufacturing differences or defects. It should be noted that coils 1-4 were prototype 

coils produced by a manufacturer without mass-production tooling for smooth tube 5 mm 

heat exchangers and it is likely that the contact quality is not as high as coils produced 

using more robust expansion techniques. Coils 5-8 and 13-16 were produced with 

pressure expansion techniques and Coils 9-12 were produced by mechanical expansion 

by a capable manufacturer. All coils were manufactured as prototypes and there may be 

some possibility that production-scale heat exchangers could have different values of 

thermal contact resistance depending on the processes employed. When omitting coils 1-

4 and 13 and 15, the louver and slit correlations with a 0.84 correction factor can predict 

98% of points with 20% error or less and 78% of points with 10% error or less. Figure 32 
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shows a summary of all slit and louver fin results and identifies the outlier points that 

should be retested and those (1-4) with anomalously low performance, potentially due to 

poor fin-to-tube contact.  

 

Figure 32: Comparison of tuned HTC predictions against experimental observations 
for both louver and slit datasets 
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7. Applications 

7.1 Refrigerant validation 

As described in section 5.6, additional tests were conducted using a louver fin heat 

exchanger with internally-enhanced tubes with three different refrigerants in condenser 

operating conditions. The purpose of these tests was to verify that the newly developed 

air-side correlations, in conjunction with the selected refrigerant-side correlations, were 

able to accurately predict the performance of complete heat exchangers with a variety of 

refrigerants in two-phase operating conditions. CoilDesigner was used to perform these 

simulations using the correlations outlined in Table 22. As shown in Figure 33, the 

predicted capacities match well with the experimentally-observed values. The total 

refrigerant pressure drops are also well-predicted, with 92% of all points predicted with 

20% error or less as shown in Figure 34. As expected from the findings in section 6.2, 

and shown in Figure 35, the air-side pressure drop is well-predicted. Additional, Figure 

36 shows that the heat exchanger models are able to accurately predict the degree of 

subcooling for the tested near-azeotropic mixture and refrigerants with temperature glide. 

Actual error bars are shown and the degree of uncertainty in subcooling comes mainly 

from the random component, caused by fluctuating readings, and the need to calculate 

refrigerant properties to find saturation temperatures.  

Table 22: Correlations used for refrigerant validation 

 Heat transfer Pressure drop 
Air-side (Sarpotdar et al., 2016b) * 

0.84 correction 
(Sarpotdar et al., 2016b) * 
0.984 correction 

Single-phase refrigerant  (Ravigururajan and Bergles, 
1985) 

(Schlager et al., 1989) 

Two-phase refrigerant (Koyama and Yonemoto, 
2006) 

(Koyama and Yonemoto, 
2006) 
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Figure 33: Simulated versus experimental capacity from condenser validation 
testing 

 

Figure 34: Simulated versus experimental refrigerant pressure drop from condenser 
validation testing 
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Figure 35: Simulated versus experimental air pressure drop from refrigerant testing 

 

Figure 36: Simulated versus experimental subcooling from refrigerant validation 
testing 
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The purpose of this section is to succinctly illustrate that the combination of the new air-

side correlations, existing correlations for refrigerant-side performance, and modeling 

software, such as CoilDesigner, can produce accurate simulations of an entire heat 

exchanger with two-phase refrigerant. The ability to accurately predict air pressure drop 

is critical for considering fan performance in the design of a heat exchanger and the 

accurate modeling of refrigerant pressure drop and subcooling is necessary to accurately 

model any vapor compression system. In this sense, a primary objective of this research 

has been satisfied by demonstrating the required tools to enable engineers to accurately 

model, design, and optimize these types of enhanced-fin heat exchangers with tube 

diameters of 5 mm and less.  

7.2 Experimental validation at CEEE 

During the course of this project, additional experiments were conducted by other 

researchers at CEEE (Huang and Gao, 2016). Two slit fin heat exchangers, one having 5 

mm OD tubes and another have 4 mm tubes were tested with water as the working fluid 

to extract air-side performance information. These particular heat exchangers were 

constructed with internally-enhanced tubes; as such, data reduction is more difficult and 

less certain due to the lack of reliable correlations for tube-side performance. 

Additionally, the exact slit geometries (which are proprietary) differ from the geometry 

for which the CFD-based correlations were developed for; the 5 mm heat exchanger has a 

greater slit width, and the 4 mm heat exchanger has an asymmetrical slit arrangement. 

Both the Wilson plot method and the CoilDesigner data reduction tool were used to 

extract air-side heat transfer coefficients and the results varied significantly. Because of 

these challenges, these data are not used in the correlation tuning conducted in section 
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6.2, but are presented here as additional data points confirming the relative performance 

of the original CFD-based correlations in predicting geometries outside of the ranges for 

which they were developed. Figure 37 shows a comparison of the simulated and 

experimental air pressure drops for the tested 5 mm heat exchanger using the proposed 

correlation for slit fins as well as the existing correlation from Wang (2001). Figure 38 

shows a comparison of the air-side heat transfer coefficients predicted with the new 

model versus the experimentally-observed heat transfer coefficients determined using the 

CoilDesigner data reduction approach and Wilson plot method. Figure 39 and Figure 40 

show the same comparisons for the sample 4 mm heat exchanger. The results show that 

the new correlations provide predictions with less error than the existing models even for 

these fin geometries which are slightly outside of the correlation range.  

 

Figure 37: Comparison of simulated and experimental air pressure drop of 5 mm 
heat exchanger. Wang (2001) correlation (left), Sarpotdar (2016) correlation (right) 
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Figure 38: Comparison of simulated and experimental heat transfer coefficients of 5 
mm heat exchanger. CoilDesigner data reduction (left), Wilson plot method (right) 

 

  

Figure 39: Comparison of simulated and experimental air pressure drop of 4 mm 
heat exchanger. Wang (2001) correlation (left), Sarpotdar (2016) correlation (right) 
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Figure 40: Comparison of simulated and experimental heat transfer coefficients of 4 
mm heat exchanger. CoilDesigner data reduction (left), Wilson plot method (right) 
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problem was defined such that the heat exchanger’s operating conditions, performance, 

and face area would remain the same as the baseline, while several performance criteria 

were optimized, as summarized in Table 25. Heat exchanger models were 

programmatically constructed using CoilDesigner to create models for each candidate 

geometry. A custom software using a Multi-Objective Genetic Algorithm (MOGA) 

solver was used to carry out the optimization. Because of the wide range of tube 

diameters, different correlations are used for different tube diameters. Table 26 contains 

the selected correlations; all tubes are considered to be internally-enhanced, and for large 

diameter tubes, a 1.5x correction factor is applied to refrigerant heat transfer and pressure 

drop correlations for smooth tubes to approximate this difference. This correction factor 

was validated from experimental testing of the baseline unit (Li and et al., 2014). 

Table 23: Baseline heat exchanger summary 

Parameter Value 
Size: LxWxH [m / in] 0.76x0.26x0.58 / 29.9x10.2x22.8 
Tubes Copper microfin, 9.52 mm / 0.375 in 
Fins Aluminum, Wavy 
Refrigerant R410A 
Heatload 4 kW / 1.14 R.T. 
Air Pressure Drop 26 Pa 
Estimated Condenser Charge 0.71 kg 
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Table 24: Optimization variables 

Parameter Value 
Pl 2xDo to 4xDo 
Pt 1.1xPl to 2xPl 
NB 1 to 6 
FPI 14 to 40 
Sh/Lp 0.3xFp to 0.7xFp/0.8 to 1.8 mm 
# Tube banks 1 to 5 
# Tubes per bank 16 to 32 
# Circuits All numbers evenly divisible by number of tubes per bank 
Nslits / Nlouvers 2 to 6 / 2 to 8 

Table 25: Optimization constraints 

Parameter Value 
Tin, ref 66.0°C / 150.8°F 
Pin, ref 2726.8 kPa / 27.3 bar 
ṁref 20.1 g/s / 2.7 lbm/min 
Tin, air 35°C / 95°F 
Pin, air 101.3 kPa / 14.7 PSI 
Air Flow Rate 0.5 m3/s / 1059.4 CFM 
Face Area 0.4 m2 / 4.3 ft2 
HX aspect ratio (Tube length/height) <1.5 
Subcooling ≥6°C / 10.8°F 
Heat load ≥4 kW / 1.14 R.T. 

 

Table 26: Correlation selection for optimization studies 

Correlation Type Small Diameter Tubes (3, 
4, 5 mm) 

Conventional tubes (7, 
7.94, 9.52 mm) 

Slit Fin: Air HTC / ΔP Sarpotdar et al., 2016a Wang et al., 2001 
Louver Fin: Air HTC / ΔP Sarpotdar et al., 2016b Wang et al., 1999 
Refrigerant single-phase 
HTC Churchill, 1977 Gnielinski, 1976 x1.5 CF 

Refrigerant single-phase 
ΔP Churchill, 1977 Churchill, 1977 x1.5 CF 

Refrigerant two-phase 
HTC Yu et al., 1998 Shah, 2013 x1.5 CF 

Refrigerant two-phase ΔP Yu et al., 1998 Friedel, 1979 x1.5 CF 
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Within this framework, several optimization studies were conducted, considering 

different objectives important to heat exchanger design. Optimization was carried out on 

both louver and slit fin geometries. However, since the results are very similar, the only 

louver fin results are presented here.  

A major factor in heat exchanger design is obviously cost, and as the popularity of 

aluminum microchannel heat exchangers increases and the global market for heat 

exchangers expands, tube-fin heat exchanger producers see increasing pressure to reduce 

costs to remain competitive. A key advantage of small-diameter tube fin heat exchangers 

is their increased material utilization and compactness; in other words, they can provide 

more heat transfer surface area per quantity of tube material compared to larger-diameter 

designs. This advantage can be seen in Figure 41, where Pareto-optimal heat exchanger 

designs show lower material costs as the tube diameter decreases. Here the “Raw 

Material Cost” is defined as the mass of aluminum and copper multiplied with their raw 

material costs at the time of writing (4.775 USD/kg for copper and 1.55 USD/kg for 

aluminum). This approach does not account for the more complex labor, tooling, and 

capital costs that are truly required to construct a heat exchanger because these 

parameters vary widely across manufacturers and locations, however, the raw material 

cost is representative of the total cost and provides a fair basis for comparison. Figure 41 

shows the potential for reduced diameter designs to achieve a lower air-side pressure 

drop than the 26 Pa baseline, but also significantly reduce raw material costs while 

maintaining the same performance and face area. At a lower air-side pressure drop than 

the baseline, 5 and 3 mm designs have the potential to reduce raw material costs by 

roughly 50 and 70%, respectively. 5 mm and smaller designs appear to consistently cost 



88 
 

less than equivalent 7 mm designs and the plot also shows that from a raw material cost 

perspective, 3 mm designs still offer significant savings over 5 mm designs 

(approximately 30% lower). It is important to note that these designs with lower air flow 

rate will perform better than the baseline in an actual system; the lower friction resistance 

will result in some reduction of fan power and/or increase in volumetric air flow rate, 

thus increasing heat exchanger capacity and/or system COP.  

 

 

Figure 41: Pareto results, minimization of material cost and air pressure drop 
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fluids with lower GWP values also present other risks in terms of flammability or 

toxicity, so the refrigerant quantities are often also limited by safety regulations. It is 

therefore necessary to find solutions in heat exchanger design that can reduce the 

required refrigerant charge in order to enable these more environmentally-friendly fluids 

while meeting all safety requirements. Figure 42 shows the results of this optimization 

study seeking to minimize air pressure drop and refrigerant charge, this time using R32 

(and appropriate operating conditions from experimentation) as the refrigerant. The 

findings are significant because R32, an A2L – or “mildly flammable” – refrigerant, is 

currently implemented in some countries, but limited due to safety concerns in others. 

The ability of small diameter heat exchangers to perform with equivalent capacity but 

drastically-reduced refrigerant charge may allow designers to safely implement new, 

more environmentally-friendly, refrigerants and mitigate their risks. The lower absolute 

quantity of refrigerant also means that the potential quantity of refrigerant that can be 

leaked, and subsequent global warming impact, will necessarily be reduced. The figure 

shows that 3, 4 and 5 mm designs can achieve equivalent performance with roughly an 

order of magnitude less refrigerant than the baseline heat exchanger. Even 7 mm designs 

have approximately twice the refrigerant charge of equivalent 5 mm designs, which 

should be expected from the ratios of internal volumes (comparing 72 and 52).  
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Figure 42: Pareto results, minimization of refrigerant charge and air pressure drop 
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8. Conclusions 

The intended purpose of this research is to make several contributions towards the 

manner in which heat exchanger performance is characterized and to provide valid 

correlations for two particular tube-fin heat exchanger geometries. The work indicates 

that the CFD-based correlation development technique implemented by others in the past, 

for example Bacellar et al. (2014), is a suitable technique, verifiable by experiments, for 

these louver- and slit-fin geometries. The DOE sampling approach was successful in 

characterizing performance through a vast design space with only a limited number of 

CFD-simulations, and the proposed correlations were able to predict CFD source data 

with a high degree of accuracy, predicting 97+% of data with 20% error or less.  

Experiments were conducted on 16 heat exchangers with 5 mm tubes and varying 

configurations of fin dimensions. Several data reduction approaches were utilized to 

extract heat transfer coefficients and dimensionless j- and f-factors from the experimental 

data; these comparisons served to highlight the limitations of each technique and 

provided validation of results by confirming that multiple techniques produce similar 

values. CoilDesigner was ultimately selected as an accurate tool for performing data 

reduction, accounting for the heat exchanger geometry and circuitry in detail.  

Experimental results validated the accuracy of the CFD-based air-side pressure drop 

correlations, which matched 100% of louver fin and slit fin tests with 20% error or less 

with correction factors applied. These results are promising and show an equivalent or 

better level of fit than most experimentally-based correlations in the literature. Applying 

a single correction factor to the original CFD-based correlation for louver fins predicts 

99% of experimentally-observed HTCs with 20% error or less, respectively. The 
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corrected correlation is able to predict 86% of slit fin heat transfer coefficients with 20% 

error or less. When HTCs are instead calculated using a new procedure that accounts for 

fin conduction and a single correction factor of 0.84 is applied to both slit- and louver-fin 

correlations, 61% of all data points are predicted with 20% error or less, but when outlier 

points are removed, 98% of the data can be predicted with 20% error or less.  

When applied to modeling heat exchangers with two-phase refrigerant flow, the selected 

correlations were able to predict the performance of condensers with R410A, R404A, and 

R407C with a high degree of accuracy. This verification confirms that the recommended 

correlations can be used reliably by designers to evaluate the performance of small 

diameter slit and louver fin heat exchangers. Additionally, several optimization studies 

were conducted using these new correlations to identify heat exchanger designs that 

could minimize material costs and refrigerant charge. These studies highlight the 

potential benefits that can be realized through the reduction of tube diameter and show, 

for example, that an optimized 5 mm heat exchanger may have roughly 50% lower cost 

and 80+% less refrigerant charge than the 9.52 mm baseline heat exchanger.  
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9. Future work 

The experimental verification conducted as part of this research focusses on heat 

exchanges with 5 mm OD tubes due to the absence of 3 mm and low availability of 4 mm 

heat exchangers at the time of writing. As these heat exchangers become more prevalent 

in the market, additional testing should be conducted to confirm the accuracy of these 

CFD-based correlations. Additional efforts should be considered to extend testing in the 

wet surface condition when condensing water covers the fin surfaces. 

While the ranges of the proposed correlations are expansive, there are some other 

characteristics that do certainly have a major impact on the performance of the fins and 

were not fully included in this study. Expanding the design space to include a range of 

louver angles and slit widths as well as different fin thicknesses would broaden the 

applicability of the correlations and may result in new fin designs with greater 

performance than what is possible in the current designs space.  

Additional studies should be conducted to better understand the number of CFD 

simulations required to develop suitable correlations and guidelines should be formed. 

The current process of CFD-based correlation development, while almost certainly less 

intensive than a purely experimental approach, is still highly computationally expensive 

and if the same quality of correlation can be developed from less data, the approach will 

be even more appealing. Conversely, as computational power continues to improve, 

conducting CFD simulations of fin performance will become increasingly accessible and 

future researchers will be less motivated by minimizing computational time and more 

willing to perform high-accuracy simulations of air-side or entire heat exchanger 

performance when evaluating new designs.  
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This work showed that the deviations between observed heat transfer coefficients and 

predictions may indicate that fin contact resistance plays a significant role in the 

performance of a heat exchanger which cannot be predicted through CFD tools. 

Additional research into the quantification of thermal contact resistance between fins and 

tubes in heat exchangers should be conducted. Current methods for measurement and 

correlations to predict fin contact resistance have unacceptably high uncertainties. If the 

CFD methodology is to be implemented for predicting heat transfer coefficients of tube-

fin heat exchangers, researchers must develop a stronger understanding of the impact of 

contact resistance in order to predict the true performance of these types of heat 

exchangers.  

At present, small diameter tube-fin heat exchangers present solutions to a number of 

problems faced by the industry. 5 mm heat exchangers are already being implemented 

widely and some manufacturers are beginning to introduce 4 mm designs. While this 

work aims to present the design tools necessary to implement these designs, there are still 

a number of manufacturing challenges that must be addressed. Reductions in tube 

diameter result in increasing refrigerant pressure drop per unit length and therefore 

require significant increases in the number of circuits within a heat exchanger. As designs 

with 5, 4 and 3 mm tubes are considered, manufacturers must find ways to construct coils 

with large numbers of circuits at a low cost, with a low rate of failure/leakage, and with 

uniform refrigerant distribution to each circuit. Fin collar diameters are limited by the 

tube hole diameter; a smaller diameter tube means that less material can be pressed to 

form a collar. The consequence of this limitation is that as tube diameters decrease, the 

fin density must increase. In order to maintain the same air pressure drop, it is desirable 
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to reduce the air velocity by increasing the coil face area, which can often be a challenge 

from a product development perspective. Placing tubes into fin sheets and expanding 

tubes also becomes increasingly difficult with reduced-diameter tubes. So while the 

benefits of reducing tube diameter are clear, and tools have been proposed for their 

design and simulation, the industry must address a number of manufacturing challenges 

before heat exchangers with tube diameters less than 5 mm see widespread adoption.  
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Nomenclature 

OD Outer diameter m 

A Area m2 

ADP "Air delta P", pressure drop Pa 

Ch Sh/Fp - 

Cl Pl/Dn - 

Ct Pt/Pl - 

Dc Collar diameter m 

Dn Nominal diameter m 

Do Outer diameter m 

f friction factor - 

Fp Fin pitch (center to center distance between fins) m 

FPI Fins per inch -/in 

Fsp Fin spacing (distance between fin faces) m 

Ft Fin thickness m 

G Mass flux kg/m2s 

h, HTC Heat transfer coefficient W/m2K 

j j factor - 

k Thermal conductivity W/m-K 

LMTD Log mean temperature difference K 

Lp Louver pitch m 

ṁ Mass flow rate kg/s 
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N 

Number (of tube banks in airflow direction, if no 

subscript) - 

P Pressure Pa 

Pd Pattern depth m 

Pl Longitudinal tube pitch m 

Pr Prandtl number - 

Pt Transverse tube pitch m 

𝑄̇𝑄 Heat transfer rate W 

Re Reynolds number - 

Sh Slit height m 

T Temperature K 

u Velocity m/s 

U Overall heat transfer coefficient W/m2K 

Wl Wavelength m 

δf Fin thickness m 

η Efficiency / effectiveness - 

η0 Fin effectiveness - 

θ Louver angle degrees 

ρ Density kg/m3 

σ Contraction ratio - 

 

 

 



98 
 

 

Subscripts 

banks tube banks 

f fin 

i inner 

l louvers 

max maximum 

min minimum 

o outer 

s slits 

simple simplified version of j and f factor using inlet thermodynamic properties 

w wall 
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Appendix A: Louver fin correlation code 

   public double GetADP(UMDCEEE.CEEEHXTFMC.Correlations.AirHTCDPInputs airinputs) 
        { 
 
            double Pl = airinputs.TubeHorizontalSpacing; 
            double Pt = airinputs.TubeVerticalSpacing; 
            double N = airinputs.Columns; 
            double Lp = airinputs.LouverPitch; 
            UMDCEEE.Units.DimensionedValue valu = new UMDCEEE.Units.DimensionedValue("Value", 0.0); 
            bool temp_ns = airinputs.UserParameters.TryGetValue("Nl", out valu);  
            double Ns = valu.Value; 
            double Ft = airinputs.FinThickness; 
            double Fp = airinputs.FinSpacing + Ft; 
            double Lh = Lp * Math.Sin(27 * 3.141592653589790000 / 180) * Math.Cos(27 * 3.141592653589790000 / 
180) + (0.000125); 
            double Rows = airinputs.Rows; 
            double fins = (airinputs.TubeLength / Fp); 
            double Dc = airinputs.TubeOD + 2.0 * airinputs.FinThickness; 
            double area_fin = ((Pt / 2 * Pl * N) - (3.141592653589790000 / 4 * Dc * Dc) / 2 * N) * 2 + 2 * (Pt / 
2 * Ft); 
            double area_tube = 3.141592653589790000 * Dc * N * (Fp - Ft) / 2; 
            double area_totalsurfacearea = area_fin + area_tube;//(airinputs.FinArea + airinputs.TubeArea) /  
            double FPM = 1 / Fp; 
            double Height = airinputs.FaceArea / airinputs.TubeLength; 
            double Width = airinputs.TubeLength; 
            double X_diag = Math.Sqrt(Pt * Pt / 4 + Pl * Pl); 
            double two_a = (Pt - Dc) - ((Pt - Dc) * Ft * FPM); 
            double two_b = ((X_diag - Dc) - (Pt - Dc) * Ft * FPM) * 2; 
            double c = two_a; 
            if (two_b < two_a) 
            { 
                c = two_b; 
            } 
            double min_free_flow_area_Shekhar = (((Height / Pt) - 1) * c + (Pt - Dc) - (Pt - Dc) * Ft * FPM) * 
Width; 
            //Min Area Caculations-End 
            double Area_min = min_free_flow_area_Shekhar / Rows / fins / 2; 
            double Area_Frontal = Pt / 2 * Fp; 
            double Sigma = Area_min / Area_Frontal; 
            double u_max = airinputs.AirAvgVelocity / Sigma; 
            double rho_in = airinputs.AirDensity; 
            double Re_Dc_MaxV = rho_in * u_max * Dc / airinputs.AirViscosity; 
            double Depth_HX = Pl * N; 
            double Dh = 4 * Area_min * Depth_HX / area_totalsurfacearea; 
            double Xl = 0.5 * Math.Pow(Pt * Pt / 4 + Pl * Pl, 0.5); 
            double Req = 1.27 * (Pt / 2) / (Dc / 2) * Math.Pow(Xl / (Pt / 2) - 0.3, 0.5); 
            double phi = (Req - 1) * (1 + 0.35 * Math.Log(Req)); 
            double G_c = u_max * rho_in; 
            double f_simplelog1 = -815760.33488704; 
            double f_simplelog2 = Math.Log(Pl) * -1013669.28781209; 
            double f_simplelog3 = Math.Log(Pt) * -1345777.74292259; 
            double f_simplelog4 = Math.Log(N) * -1345602.68063008; 
            double f_simplelog5 = Math.Log(Lp) * -364221.902609561; 
            double f_simplelog6 = Math.Log(Ns) * -173875.825256107; 
            double f_simplelog7 = Math.Log(Fp) * -1344974.33608404; 
            double f_simplelog8 = Math.Log(Lh) * 2617.19789112508; 
            double f_simplelog9 = Math.Log(Dc) * 483.197355613171; 
            double f_simplelog10 = Math.Log(Dh) * 1344955.24773289; 
            double f_simplelog11 = Math.Log(area_totalsurfacearea) * 1345602.40091377; 
            double f_simplelog12 = Math.Log(Area_min) * 13.423204051482; 
            double f_simplelog13 = Math.Log(Re_Dc_MaxV) * -2.29231399573514; 
            double f_simplelog14 = Math.Log(Sigma) * -1345307.13319948; 
            double f_simplelog15 = Math.Log(phi) * 309.11386829997; 
            double f_simplelog16 = Math.Log(Pl) * Math.Log(Lp) * -521591.61576759; 
            double f_simplelog17 = Math.Log(Pl) * Math.Log(Ns) * -250824.761248093; 
            double f_simplelog18 = Math.Log(Pl) * Math.Log(Re_Dc_MaxV) * -0.561652794109108; 
            double f_simplelog19 = Math.Log(Pl) * Math.Log(phi) * 2.94069014358154; 
            double f_simplelog20 = Math.Log(Pt) * Math.Log(N) * -479302.99085586; 
            double f_simplelog21 = Math.Log(Pt) * Math.Log(Lp) * -521647.13023717; 
            double f_simplelog22 = Math.Log(Pt) * Math.Log(Ns) * -250814.801164953; 
            double f_simplelog23 = Math.Log(Pt) * Math.Log(Fp) * -479331.362019013; 
            double f_simplelog24 = Math.Log(Pt) * Math.Log(Lh) * 70.0900211475239; 
            double f_simplelog25 = Math.Log(Pt) * Math.Log(Dh) * 479330.208530486; 
            double f_simplelog26 = Math.Log(Pt) * Math.Log(area_totalsurfacearea) * 479302.936983934; 
            double f_simplelog27 = Math.Log(Pt) * Math.Log(Re_Dc_MaxV) * -0.425470491629325; 
            double f_simplelog28 = Math.Log(Pt) * Math.Log(Sigma) * -479313.770026838; 
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            double f_simplelog29 = Math.Log(N) * Math.Log(Lp) * -521716.365948558; 
            double f_simplelog30 = Math.Log(N) * Math.Log(Ns) * -250824.801977549; 
            double f_simplelog31 = Math.Log(N) * Math.Log(Fp) * -479333.638651077; 
            double f_simplelog32 = Math.Log(N) * Math.Log(Lh) * 158.494622059558; 
            double f_simplelog33 = Math.Log(N) * Math.Log(Dc) * -8.44234782771136; 
            double f_simplelog34 = Math.Log(N) * Math.Log(Dh) * 479333.520457786; 
            double f_simplelog35 = Math.Log(N) * Math.Log(area_totalsurfacearea) * 479301.272506505; 
            double f_simplelog36 = Math.Log(N) * Math.Log(Re_Dc_MaxV) * -0.421940657278265; 
            double f_simplelog37 = Math.Log(N) * Math.Log(Sigma) * -479306.779047871; 
            double f_simplelog38 = Math.Log(Lp) * Math.Log(Ns) * 3.09124696669282; 
            double f_simplelog39 = Math.Log(Lp) * Math.Log(Fp) * -521962.525531339; 
            double f_simplelog40 = Math.Log(Lp) * Math.Log(Lh) * 194.501561717711; 
            double f_simplelog41 = Math.Log(Lp) * Math.Log(Dc) * -204.699481136264; 
            double f_simplelog42 = Math.Log(Lp) * Math.Log(Dh) * 521960.241376619; 
            double f_simplelog43 = Math.Log(Lp) * Math.Log(area_totalsurfacearea) * 521716.817311239; 
            double f_simplelog44 = Math.Log(Lp) * Math.Log(Re_Dc_MaxV) * 0.0266395847925328; 
            double f_simplelog45 = Math.Log(Lp) * Math.Log(Sigma) * -521811.414035691; 
            double f_simplelog46 = Math.Log(Lp) * Math.Log(phi) * -134.206445355139; 
            double f_simplelog47 = Math.Log(Ns) * Math.Log(Fp) * -250817.209728926; 
            double f_simplelog48 = Math.Log(Ns) * Math.Log(Lh) * -3.80683876233717; 
            double f_simplelog49 = Math.Log(Ns) * Math.Log(Dc) * -0.23707483211039; 
            double f_simplelog50 = Math.Log(Ns) * Math.Log(Dh) * 250827.344548505; 
            double f_simplelog51 = Math.Log(Ns) * Math.Log(area_totalsurfacearea) * 250824.80642749; 
            double f_simplelog52 = Math.Log(Ns) * Math.Log(Area_min) * -10.0743991360318; 
            double f_simplelog53 = Math.Log(Ns) * Math.Log(Re_Dc_MaxV) * 0.0875763792954198; 
            double f_simplelog54 = Math.Log(Ns) * Math.Log(Sigma) * -250816.460279823; 
            double f_simplelog55 = Math.Log(Fp) * Math.Log(Lh) * 463.920196222731; 
            double f_simplelog56 = Math.Log(Fp) * Math.Log(Dc) * -36.1483908150303; 
            double f_simplelog57 = Math.Log(Fp) * Math.Log(Dh) * 479373.557435568; 
            double f_simplelog58 = Math.Log(Fp) * Math.Log(area_totalsurfacearea) * 479334.06628623; 
            double f_simplelog59 = Math.Log(Fp) * Math.Log(Sigma) * -479306.053688274; 
            double f_simplelog60 = Math.Log(Fp) * Math.Log(phi) * -38.2118653618422; 
            double f_simplelog61 = Math.Log(Lh) * Math.Log(Dc) * 259.849958299261; 
            double f_simplelog62 = Math.Log(Lh) * Math.Log(Dh) * -459.898029055765; 
            double f_simplelog63 = Math.Log(Lh) * Math.Log(area_totalsurfacearea) * -159.058633609663; 
            double f_simplelog64 = Math.Log(Lh) * Math.Log(Sigma) * 272.460429753476; 
            double f_simplelog65 = Math.Log(Lh) * Math.Log(phi) * 170.895432506583; 
            double f_simplelog66 = Math.Log(Dc) * Math.Log(Dh) * 36.6127424275103; 
            double f_simplelog67 = Math.Log(Dc) * Math.Log(area_totalsurfacearea) * 8.62176321997616; 
            double f_simplelog68 = Math.Log(Dc) * Math.Log(Re_Dc_MaxV) * -0.204280764853943; 
            double f_simplelog69 = Math.Log(Dc) * Math.Log(phi) * -9.93228659002375; 
            double f_simplelog70 = Math.Log(Dh) * Math.Log(area_totalsurfacearea) * -479333.974460417; 
            double f_simplelog71 = Math.Log(Dh) * Math.Log(Re_Dc_MaxV) * 0.227348862308172; 
            double f_simplelog72 = Math.Log(Dh) * Math.Log(Sigma) * 479309.359926494; 
            double f_simplelog73 = Math.Log(Dh) * Math.Log(phi) * 39.3472389795062; 
            double f_simplelog74 = Math.Log(area_totalsurfacearea) * Math.Log(Re_Dc_MaxV) * 0.410577562650643; 
            double f_simplelog75 = Math.Log(area_totalsurfacearea) * Math.Log(Sigma) * 479307.145169789; 
            double f_simplelog76 = Math.Log(Re_Dc_MaxV) * Math.Log(Sigma) * -0.182038472932637; 
            double f_simplelog77 = Math.Log(Sigma) * Math.Log(phi) * -19.0629730027725; 
            double f_simplelog78 = Math.Log(Pl) * Math.Log(Pl) * 239648.267640287; 
            double f_simplelog79 = Math.Log(Pt) * Math.Log(Pt) * -239655.068016596; 
            double f_simplelog80 = Math.Log(N) * Math.Log(N) * -239650.607771909; 
            double f_simplelog81 = Math.Log(Lp) * Math.Log(Lp) * -229.191255863403; 
            double f_simplelog82 = Math.Log(Ns) * Math.Log(Ns) * 0.115797101976652; 
            double f_simplelog83 = Math.Log(Fp) * Math.Log(Fp) * -239687.862324651; 
            double f_simplelog84 = Math.Log(Dc) * Math.Log(Dc) * -12.8648689704997; 
            double f_simplelog85 = Math.Log(Dh) * Math.Log(Dh) * -239687.050122179; 
            double f_simplelog86 = Math.Log(area_totalsurfacearea) * Math.Log(area_totalsurfacearea) * -
239650.635334316; 
            double f_simplelog87 = Math.Log(Re_Dc_MaxV) * Math.Log(Re_Dc_MaxV) * 0.105780310972096; 
            double f_simplelog88 = Math.Log(Sigma) * Math.Log(Sigma) * -239638.755173034; 
            double f_simplelogsum = f_simplelog1 + f_simplelog2 + f_simplelog3 + f_simplelog4 + f_simplelog5 + 
f_simplelog6 + f_simplelog7 + f_simplelog8 + f_simplelog9 + f_simplelog10 + f_simplelog11 + 
           f_simplelog12 + f_simplelog13 + f_simplelog14 + f_simplelog15 + f_simplelog16 + f_simplelog17 + 
f_simplelog18 + f_simplelog19 + f_simplelog20 + f_simplelog21 + f_simplelog22 + f_simplelog23 + 
           f_simplelog24 + f_simplelog25 + f_simplelog26 + f_simplelog27 + f_simplelog28 + f_simplelog29 + 
f_simplelog30 + f_simplelog31 + f_simplelog32 + f_simplelog33 + f_simplelog34 + f_simplelog35 + 
           f_simplelog36 + f_simplelog37 + f_simplelog38 + f_simplelog39 + f_simplelog40 + f_simplelog41 + 
f_simplelog42 + f_simplelog43 + f_simplelog44 + f_simplelog45 + f_simplelog46 + f_simplelog47 + 
           f_simplelog48 + f_simplelog49 + f_simplelog50 + f_simplelog51 + f_simplelog52 + f_simplelog53 + 
f_simplelog54 + f_simplelog55 + f_simplelog56 + f_simplelog57 + f_simplelog58 + f_simplelog59 + 
           f_simplelog60 + f_simplelog61 + f_simplelog62 + f_simplelog63 + f_simplelog64 + f_simplelog65 + 
f_simplelog66 + f_simplelog67 + f_simplelog68 + f_simplelog69 + f_simplelog70 + f_simplelog71 + 
           f_simplelog72 + f_simplelog73 + f_simplelog74 + f_simplelog75 + f_simplelog76 + f_simplelog77 + 
f_simplelog78 + f_simplelog79 + f_simplelog80 + f_simplelog81 + f_simplelog82 + f_simplelog83 + 
           f_simplelog84 + f_simplelog85 + f_simplelog86 + f_simplelog87 + f_simplelog88; 
 
            double f = Math.Exp(f_simplelogsum); 
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            double DP = (f * area_totalsurfacearea / (Area_min)) * (Math.Pow(G_c, 2.0) / (2.0 * rho_in)); 
//simplified expression without iteration 
            return DP; 
 
        } 
 
 
        public double GetAHTC(UMDCEEE.CEEEHXTFMC.Correlations.AirHTCDPInputs airinputs) 
        { 
            
            double Pl = airinputs.TubeHorizontalSpacing; 
            double Pt = airinputs.TubeVerticalSpacing; 
            double N = airinputs.Columns; 
            double Lp = airinputs.LouverPitch; 
            UMDCEEE.Units.DimensionedValue valu = new UMDCEEE.Units.DimensionedValue("Value", 0.0); 
            bool temp_ns = airinputs.UserParameters.TryGetValue("Nl", out valu); 
            double Ns = valu.Value; 
            
            double Ft = airinputs.FinThickness; 
            double Fp = airinputs.FinSpacing + Ft; 
            double Lh = Lp * Math.Sin(27 * 3.141592653589790000 / 180) * Math.Cos(27 * 3.141592653589790000 / 
180) + (0.000125); 
            double Rows = airinputs.Rows; 
            double fins = (airinputs.TubeLength / Fp); 
            double Dc = airinputs.TubeOD + 2.0 * airinputs.FinThickness; 
            double area_fin = ((Pt / 2 * Pl * N) - (3.141592653589790000 / 4 * Dc * Dc) / 2 * N) * 2 + 2 * (Pt / 
2 * Ft); 
            double area_tube = 3.141592653589790000 * Dc * N * (Fp - Ft) / 2; 
            double area_totalsurfacearea = area_fin + area_tube;  
            double FPM = 1 / Fp; 
            double Height = airinputs.FaceArea / airinputs.TubeLength; 
            double Width = airinputs.TubeLength; 
            double X_diag = Math.Sqrt(Pt * Pt / 4 + Pl * Pl); 
            double two_a = (Pt - Dc) - ((Pt - Dc) * Ft * FPM); 
            double two_b = ((X_diag - Dc) - (Pt - Dc) * Ft * FPM) * 2; 
 
            double c = two_a; 
            if (two_b < two_a) 
            { 
                c = two_b; 
            } 
            double min_free_flow_area_Shekhar = (((Height / Pt) - 1) * c + (Pt - Dc) - (Pt - Dc) * Ft * FPM) * 
Width; 
            //Min Area Caculations-End 
            double Area_min = min_free_flow_area_Shekhar / Rows / fins / 2; 
            double Area_Frontal = Pt / 2 * Fp; 
            double Sigma = Area_min / Area_Frontal; 
            double u_max = airinputs.AirAvgVelocity / Sigma; 
            double rho_in = airinputs.AirDensity;  
            double Re_Dc_MaxV = rho_in * u_max * Dc / airinputs.AirViscosity; 
            double Depth_HX = Pl * N; 
            double Dh = 4 * Area_min * Depth_HX / area_totalsurfacearea; 
            double G_c = u_max * rho_in; 
            double Pr = airinputs.AirSpecificHeat * airinputs.AirViscosity / airinputs.AirConductivity; 
 
            double Xl = 0.5 * Math.Pow(Pt * Pt / 4 + Pl * Pl, 0.5); 
            double Req = 1.27 * (Pt / 2) / (Dc / 2) * Math.Pow(Xl / (Pt / 2) - 0.3, 0.5); 
            double phi = (Req - 1) * (1 + 0.35 * Math.Log(Req)); 
 
            double neta1 = -12868725.2433763; 
            double neta2 = Math.Log(Pl) * -18565659.0112163; 
            double neta3 = Math.Log(Pt) * -18565604.1786456; 
            double neta4 = Math.Log(N) * -18565647.4819432; 
            double neta5 = Math.Log(Lp) * 4437161.05821925; 
            double neta6 = Math.Log(Ns) * 48210.2110600247; 
            double neta7 = Math.Log(Fp) * -18565563.2379018; 
            double neta8 = Math.Log(Lh) * -5521760.42376142; 
            double neta9 = Math.Log(Dc) * 15.6744733896143; 
            double neta10 = Math.Log(Dh) * 18565617.0971958; 
            double neta11 = Math.Log(area_totalsurfacearea) * 18565652.2834347; 
            double neta12 = Math.Log(Area_min) * -133017.443343003; 
            double neta13 = Math.Log(Re_Dc_MaxV) * 54749.092282147; 
            double neta14 = Math.Log(Sigma) * -18129911.7092101; 
            double neta15 = Math.Log(phi) * 9.31796998616484; 
            double neta16 = Math.Log(Pl) * Math.Log(Lp) * 6401525.77628698; 
            double neta17 = Math.Log(Pl) * Math.Log(Ns) * 69546.2508242001; 
            double neta18 = Math.Log(Pl) * Math.Log(Lh) * -7966266.51840767; 
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            double neta19 = Math.Log(Pl) * Math.Log(Dc) * 3.41449990601487; 
            double neta20 = Math.Log(Pl) * Math.Log(Area_min) * -191823.845650411; 
            double neta21 = Math.Log(Pl) * Math.Log(Re_Dc_MaxV) * 78990.7690650583; 
            double neta22 = Math.Log(Pl) * Math.Log(Sigma) * 628530.840244192; 
            double neta23 = Math.Log(Pl) * Math.Log(phi) * 3.47679954026221; 
            double neta24 = Math.Log(Pt) * Math.Log(Lp) * 6401523.91133061; 
            double neta25 = Math.Log(Pt) * Math.Log(Ns) * 69543.2052214506; 
            double neta26 = Math.Log(Pt) * Math.Log(Fp) * 14.6794156029264; 
            double neta27 = Math.Log(Pt) * Math.Log(Lh) * -7966264.16576323; 
            double neta28 = Math.Log(Pt) * Math.Log(Dc) * -2.43865183976936; 
            double neta29 = Math.Log(Pt) * Math.Log(area_totalsurfacearea) * -2.06494609694094; 
            double neta30 = Math.Log(Pt) * Math.Log(Area_min) * -191833.162197914; 
            double neta31 = Math.Log(Pt) * Math.Log(Re_Dc_MaxV) * 78990.6294677191; 
            double neta32 = Math.Log(Pt) * Math.Log(Sigma) * 628523.383786794; 
            double neta33 = Math.Log(N) * Math.Log(Lp) * 6401525.1668951; 
            double neta34 = Math.Log(N) * Math.Log(Ns) * 69546.250388997; 
            double neta35 = Math.Log(N) * Math.Log(Fp) * 2.27170684135554; 
            double neta36 = Math.Log(N) * Math.Log(Lh) * -7966265.77006362; 
            double neta37 = Math.Log(N) * Math.Log(Dc) * 0.0287579522998578; 
            double neta38 = Math.Log(N) * Math.Log(Dh) * -2.45527002811045; 
            double neta39 = Math.Log(N) * Math.Log(area_totalsurfacearea) * 0.0227224631503323; 
            double neta40 = Math.Log(N) * Math.Log(Area_min) * -191823.618094194; 
            double neta41 = Math.Log(N) * Math.Log(Re_Dc_MaxV) * 78990.490389871; 
            double neta42 = Math.Log(N) * Math.Log(Sigma) * 628532.390008747; 
            double neta43 = Math.Log(Lp) * Math.Log(Ns) * -0.725575324081059; 
            double neta44 = Math.Log(Lp) * Math.Log(Fp) * 6401512.7952845; 
            double neta45 = Math.Log(Lp) * Math.Log(Lh) * -0.852339807896888; 
            double neta46 = Math.Log(Lp) * Math.Log(Dh) * -6401513.17381744; 
            double neta47 = Math.Log(Lp) * Math.Log(area_totalsurfacearea) * -6401526.30491028; 
            double neta48 = Math.Log(Lp) * Math.Log(Re_Dc_MaxV) * 0.921561498016026; 
            double neta49 = Math.Log(Lp) * Math.Log(Sigma) * 6401519.98263144; 
            double neta50 = Math.Log(Ns) * Math.Log(Fp) * 69543.6000034099; 
            double neta51 = Math.Log(Ns) * Math.Log(Lh) * 0.898048743220976; 
            double neta52 = Math.Log(Ns) * Math.Log(Dh) * -69546.6851769345; 
            double neta53 = Math.Log(Ns) * Math.Log(area_totalsurfacearea) * -69546.2451751534; 
            double neta54 = Math.Log(Ns) * Math.Log(Area_min) * 3.07463216193912; 
            double neta55 = Math.Log(Ns) * Math.Log(Re_Dc_MaxV) * -0.0170831498922733; 
            double neta56 = Math.Log(Ns) * Math.Log(Sigma) * 69543.4750553705; 
            double neta57 = Math.Log(Ns) * Math.Log(phi) * -0.039650104433712; 
            double neta58 = Math.Log(Fp) * Math.Log(Lh) * -7966249.47557364; 
            double neta59 = Math.Log(Fp) * Math.Log(Dh) * -19.0981084017171; 
            double neta60 = Math.Log(Fp) * Math.Log(area_totalsurfacearea) * -4.02533618343807; 
            double neta61 = Math.Log(Fp) * Math.Log(Area_min) * -191825.896382285; 
            double neta62 = Math.Log(Fp) * Math.Log(Re_Dc_MaxV) * 78990.01396144; 
            double neta63 = Math.Log(Fp) * Math.Log(Sigma) * 628529.558948703; 
            double neta64 = Math.Log(Lh) * Math.Log(Dh) * 7966249.80712876; 
            double neta65 = Math.Log(Lh) * Math.Log(area_totalsurfacearea) * 7966267.20777591; 
            double neta66 = Math.Log(Lh) * Math.Log(Re_Dc_MaxV) * -1.16422508678719; 
            double neta67 = Math.Log(Lh) * Math.Log(Sigma) * -7966258.42544289; 
            double neta68 = Math.Log(Lh) * Math.Log(phi) * -0.0912952115032578; 
            double neta69 = Math.Log(Dc) * Math.Log(Re_Dc_MaxV) * -0.459323730232368; 
            double neta70 = Math.Log(Dc) * Math.Log(phi) * -2.32638461344203; 
            double neta71 = Math.Log(Dh) * Math.Log(area_totalsurfacearea) * 2.11916523713542; 
            double neta72 = Math.Log(Dh) * Math.Log(Area_min) * 191820.553959153; 
            double neta73 = Math.Log(Dh) * Math.Log(Re_Dc_MaxV) * -78989.9904841306; 
            double neta74 = Math.Log(Dh) * Math.Log(Sigma) * -628544.203733193; 
            double neta75 = Math.Log(area_totalsurfacearea) * Math.Log(Area_min) * 191825.671797689; 
            double neta76 = Math.Log(area_totalsurfacearea) * Math.Log(Re_Dc_MaxV) * -78990.5196678448; 
            double neta77 = Math.Log(area_totalsurfacearea) * Math.Log(Sigma) * -628534.212108985; 
            double neta78 = Math.Log(Area_min) * Math.Log(Sigma) * -191805.502446343; 
            double neta79 = Math.Log(Area_min) * Math.Log(phi) * -0.253477247912346; 
            double neta80 = Math.Log(Re_Dc_MaxV) * Math.Log(Sigma) * 78990.3438117407; 
            double neta81 = Math.Log(Re_Dc_MaxV) * Math.Log(phi) * -0.349301272031211; 
            double neta82 = Math.Log(Sigma) * Math.Log(phi) * 2.14235196424352; 
            double neta83 = Math.Log(Pl) * Math.Log(Pl) * -1.90160746060201; 
            double neta84 = Math.Log(Pt) * Math.Log(Pt) * 10.6715988482634; 
            double neta85 = Math.Log(Ns) * Math.Log(Ns) * -0.0228136607611045; 
            double neta86 = Math.Log(Fp) * Math.Log(Fp) * 12.5257838025938; 
            double neta87 = Math.Log(Dh) * Math.Log(Dh) * 12.2122283370594; 
            double neta88 = Math.Log(Sigma) * Math.Log(Sigma) * 628518.229883001; 
            double neta89 = Math.Log(phi) * Math.Log(phi) * -1.6782190856396; 
 
 
            double netasum = neta1 + neta2 + neta3 + neta4 + neta5 + neta6 + neta7 + neta8 + neta9 + neta10 + 
neta11 + neta12 + neta13 + neta14 + neta15 + neta16 + neta17 + neta18 + neta19 + neta20 + neta21 + neta22 + 
neta23 + neta24 + neta25 + neta26 + neta27 + neta28 + neta29 + neta30 + neta31 + neta32 + neta33 + neta34 + 
neta35 + neta36 + neta37 + neta38 + neta39 + neta40 + neta41 + neta42 + neta43 + neta44 + neta45 + neta46 + 
neta47 + neta48 + neta49 + neta50 + neta51 + neta52 + neta53 + neta54 + neta55 + neta56 + neta57 + neta58 + 
neta59 + neta60 + neta61 + neta62 + neta63 + neta64 + neta65 + neta66 + neta67 + neta68 + neta69 + neta70 + 
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neta71 + neta72 + neta73 + neta74 + neta75 + neta76 + neta77 + neta78 + neta79 + neta80 + neta81 + neta82 + 
neta83 + neta84 + neta85 + neta86 + neta87 + neta88 + neta89; 
 
            double neta_correlation = Math.Exp(netasum); 
            // H T C     C A L C U L A T I O N S  
 
            double j_simplelog1 = -3217786.22453845; 
            double j_simplelog2 = Math.Log(Pl) * -4643227.18575148; 
            double j_simplelog3 = Math.Log(Pt) * -4643603.4143226; 
            double j_simplelog4 = Math.Log(N) * -4643111.10169104; 
            double j_simplelog5 = Math.Log(Lp) * -86.4348099798031; 
            double j_simplelog6 = Math.Log(Ns) * -0.953010348856323; 
            double j_simplelog7 = Math.Log(Fp) * -4642797.65839097; 
            double j_simplelog8 = Math.Log(Lh) * -436235.649233502; 
            double j_simplelog9 = Math.Log(Dc) * 91.5408189430598; 
            double j_simplelog10 = Math.Log(Dh) * 4641953.24389938; 
            double j_simplelog11 = Math.Log(area_totalsurfacearea) * 4643125.60753054; 
            double j_simplelog12 = Math.Log(Area_min) * 474.417027718359; 
            double j_simplelog13 = Math.Log(Re_Dc_MaxV) * -3.0270821002864; 
            double j_simplelog14 = Math.Log(Sigma) * -4643074.10062615; 
            double j_simplelog15 = Math.Log(phi) * 63.7023220555819; 
            double j_simplelog16 = Math.Log(neta_correlation) * -50.7931602860337; 
            double j_simplelog17 = Math.Log(Pl) * Math.Log(Ns) * 1.79387845257246; 
            double j_simplelog18 = Math.Log(Pl) * Math.Log(Lh) * -629519.442314844; 
            double j_simplelog19 = Math.Log(Pl) * Math.Log(Dc) * -80.7473593389511; 
            double j_simplelog20 = Math.Log(Pl) * Math.Log(Dh) * -534.631059666487; 
            double j_simplelog21 = Math.Log(Pl) * Math.Log(area_totalsurfacearea) * 9.78532292231181; 
            double j_simplelog22 = Math.Log(Pl) * Math.Log(Re_Dc_MaxV) * 3.69378937938928; 
            double j_simplelog23 = Math.Log(Pl) * Math.Log(phi) * -12.0748126508112; 
            double j_simplelog24 = Math.Log(Pt) * Math.Log(N) * -49.2971491070941; 
            double j_simplelog25 = Math.Log(Pt) * Math.Log(Lp) * -11.1450052251599; 
            double j_simplelog26 = Math.Log(Pt) * Math.Log(Ns) * 1.52635139649896; 
            double j_simplelog27 = Math.Log(Pt) * Math.Log(Fp) * -759.215213643526; 
            double j_simplelog28 = Math.Log(Pt) * Math.Log(Lh) * -629504.211243779; 
            double j_simplelog29 = Math.Log(Pt) * Math.Log(Dc) * -91.9803531243105; 
            double j_simplelog30 = Math.Log(Pt) * Math.Log(Dh) * 128.356830857079; 
            double j_simplelog31 = Math.Log(Pt) * Math.Log(area_totalsurfacearea) * 48.9549342597284; 
            double j_simplelog32 = Math.Log(Pt) * Math.Log(Area_min) * 93.5378471834916; 
            double j_simplelog33 = Math.Log(Pt) * Math.Log(Re_Dc_MaxV) * 3.13233689777716; 
            double j_simplelog34 = Math.Log(Pt) * Math.Log(Sigma) * -529.052046173429; 
            double j_simplelog35 = Math.Log(Pt) * Math.Log(phi) * -21.5283398951988; 
            double j_simplelog36 = Math.Log(Pt) * Math.Log(neta_correlation) * -8.06380130175587; 
            double j_simplelog37 = Math.Log(N) * Math.Log(Lh) * -629516.440324098; 
            double j_simplelog38 = Math.Log(N) * Math.Log(Dc) * -48.2121788549437; 
            double j_simplelog39 = Math.Log(N) * Math.Log(Dh) * -573.967569111329; 
            double j_simplelog40 = Math.Log(N) * Math.Log(area_totalsurfacearea) * -10.0176143362261; 
            double j_simplelog41 = Math.Log(N) * Math.Log(Area_min) * 45.3350188168664; 
            double j_simplelog42 = Math.Log(N) * Math.Log(Re_Dc_MaxV) * -0.127908506892957; 
            double j_simplelog43 = Math.Log(N) * Math.Log(neta_correlation) * -41.4151228623828; 
            double j_simplelog44 = Math.Log(Lp) * Math.Log(Fp) * -115.416420076013; 
            double j_simplelog45 = Math.Log(Lp) * Math.Log(Dh) * 119.761953505347; 
            double j_simplelog46 = Math.Log(Lp) * Math.Log(Re_Dc_MaxV) * 0.141408244269906; 
            double j_simplelog47 = Math.Log(Lp) * Math.Log(Sigma) * -81.4238789892555; 
            double j_simplelog48 = Math.Log(Lp) * Math.Log(neta_correlation) * 0.921127169350298; 
            double j_simplelog49 = Math.Log(Ns) * Math.Log(Lh) * 0.068970115204343; 
            double j_simplelog50 = Math.Log(Ns) * Math.Log(Dc) * -3.32183130744739; 
            double j_simplelog51 = Math.Log(Ns) * Math.Log(area_totalsurfacearea) * -0.0625621682449373; 
            double j_simplelog52 = Math.Log(Ns) * Math.Log(Re_Dc_MaxV) * 0.105399456367645; 
            double j_simplelog53 = Math.Log(Ns) * Math.Log(Sigma) * 1.03810317200366; 
            double j_simplelog54 = Math.Log(Ns) * Math.Log(phi) * -2.12971282121861; 
            double j_simplelog55 = Math.Log(Ns) * Math.Log(neta_correlation) * 0.660103163883099; 
            double j_simplelog56 = Math.Log(Fp) * Math.Log(Lh) * -629369.621859025; 
            double j_simplelog57 = Math.Log(Fp) * Math.Log(Area_min) * 665.155310336052; 
            double j_simplelog58 = Math.Log(Fp) * Math.Log(Sigma) * -976.790669103759; 
            double j_simplelog59 = Math.Log(Fp) * Math.Log(phi) * 7.47267066033452; 
            double j_simplelog60 = Math.Log(Fp) * Math.Log(neta_correlation) * -27.493806106375; 
            double j_simplelog61 = Math.Log(Lh) * Math.Log(Dc) * 4.9859506097265; 
            double j_simplelog62 = Math.Log(Lh) * Math.Log(Dh) * 629364.59114238; 
            double j_simplelog63 = Math.Log(Lh) * Math.Log(area_totalsurfacearea) * 629516.40404567; 
            double j_simplelog64 = Math.Log(Lh) * Math.Log(Sigma) * -629415.075120887; 
            double j_simplelog65 = Math.Log(Lh) * Math.Log(phi) * 3.65282676588757; 
            double j_simplelog66 = Math.Log(Dc) * Math.Log(Dh) * 11.4127378130943; 
            double j_simplelog67 = Math.Log(Dc) * Math.Log(area_totalsurfacearea) * 48.795681335653; 
            double j_simplelog68 = Math.Log(Dc) * Math.Log(Re_Dc_MaxV) * -7.06275929217822; 
            double j_simplelog69 = Math.Log(Dc) * Math.Log(phi) * 18.8867271794211; 
            double j_simplelog70 = Math.Log(Dc) * Math.Log(neta_correlation) * -74.8642343154216; 
            double j_simplelog71 = Math.Log(Dh) * Math.Log(area_totalsurfacearea) * 564.170295758917; 
            double j_simplelog72 = Math.Log(Dh) * Math.Log(Area_min) * -662.441267957619; 
            double j_simplelog73 = Math.Log(Dh) * Math.Log(neta_correlation) * 26.5354169426133; 
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            double j_simplelog74 = Math.Log(area_totalsurfacearea) * Math.Log(Area_min) * -35.4613366909185; 
            double j_simplelog75 = Math.Log(area_totalsurfacearea) * Math.Log(neta_correlation) * 
40.0599010032903; 
            double j_simplelog76 = Math.Log(Area_min) * Math.Log(Sigma) * 438.668372919593; 
            double j_simplelog77 = Math.Log(Re_Dc_MaxV) * Math.Log(Sigma) * 1.98373984110075; 
            double j_simplelog78 = Math.Log(Re_Dc_MaxV) * Math.Log(phi) * -4.48371977574494; 
            double j_simplelog79 = Math.Log(Re_Dc_MaxV) * Math.Log(neta_correlation) * 1.60608879552036; 
            double j_simplelog80 = Math.Log(Sigma) * Math.Log(phi) * 16.2567224337724; 
            double j_simplelog81 = Math.Log(phi) * Math.Log(neta_correlation) * -50.447406905026; 
            double j_simplelog82 = Math.Log(Pt) * Math.Log(Pt) * -92.4998382825307; 
            double j_simplelog83 = Math.Log(N) * Math.Log(N) * 10.0627305554213; 
            double j_simplelog84 = Math.Log(Fp) * Math.Log(Fp) * -601.379446157448; 
            double j_simplelog85 = Math.Log(Dc) * Math.Log(Dc) * 27.1120519957628; 
            double j_simplelog86 = Math.Log(Dh) * Math.Log(Dh) * 599.09261913114; 
            double j_simplelog87 = Math.Log(Re_Dc_MaxV) * Math.Log(Re_Dc_MaxV) * 0.0885784513892449; 
            double j_simplelog88 = Math.Log(Sigma) * Math.Log(Sigma) * -379.32816828361; 
 
            double j_simple_log_sum = j_simplelog1 + j_simplelog2 + j_simplelog3 + j_simplelog4 + j_simplelog5 + 
j_simplelog6 + j_simplelog7 + j_simplelog8 + j_simplelog9 + j_simplelog10 + j_simplelog11 + j_simplelog12 + 
j_simplelog13 + j_simplelog14 + 
            j_simplelog15 + j_simplelog16 + j_simplelog17 + j_simplelog18 + j_simplelog19 + j_simplelog20 + 
j_simplelog21 + j_simplelog22 + j_simplelog23 + j_simplelog24 + j_simplelog25 + j_simplelog26 + j_simplelog27 + 
j_simplelog28 + j_simplelog29 + 
            j_simplelog30 + j_simplelog31 + j_simplelog32 + j_simplelog33 + j_simplelog34 + j_simplelog35 + 
j_simplelog36 + j_simplelog37 + j_simplelog38 + j_simplelog39 + j_simplelog40 + j_simplelog41 + j_simplelog42 + 
j_simplelog43 + j_simplelog44 + 
            j_simplelog45 + j_simplelog46 + j_simplelog47 + j_simplelog48 + j_simplelog49 + j_simplelog50 + 
j_simplelog51 + j_simplelog52 + j_simplelog53 + j_simplelog54 + j_simplelog55 + j_simplelog56 + j_simplelog57 + 
j_simplelog58 + j_simplelog59 + 
            j_simplelog60 + j_simplelog61 + j_simplelog62 + j_simplelog63 + j_simplelog64 + j_simplelog65 + 
j_simplelog66 + j_simplelog67 + j_simplelog68 + j_simplelog69 + j_simplelog70 + j_simplelog71 + j_simplelog72 + 
j_simplelog73 + j_simplelog74 + 
            j_simplelog75 + j_simplelog76 + j_simplelog77 + j_simplelog78 + j_simplelog79 + j_simplelog80 + 
j_simplelog81 + j_simplelog82 + j_simplelog83 + j_simplelog84 + j_simplelog85 + j_simplelog86 + j_simplelog87 + 
j_simplelog88; 
            double j_simple = Math.Exp(j_simple_log_sum); 
 
            double HTC = j_simple * airinputs.AirDensity * u_max * airinputs.AirSpecificHeat / Math.Pow(Pr, 
0.6666666666667); 
            return HTC; 
 
        } 
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Appendix B: Slit HTC correlation code 

         public double GetAHTC(UMDCEEE.CEEEHXTFMC.Correlations.AirHTCDPInputs airinputs) 
        { 
            double Pl = airinputs.TubeHorizontalSpacing; 
            double Pt = airinputs.TubeVerticalSpacing; 
            double N = airinputs.Columns; 
            double Sh = airinputs.SlitHeight; 
            double Ns = airinputs.SlitCount;//????? airinputs.LouverCount;//????? 
 
            UMDCEEE.Units.DimensionedValue valu = new UMDCEEE.Units.DimensionedValue("Value", 0.0); 
            //bool temp_ns = airinputs.UserParameters.TryGetValue("Nl", out valu); 
            double Ft = airinputs.FinThickness; 
            double Fp = airinputs.FinSpacing + Ft; 
            double Rows = airinputs.Rows; 
            double fins = (airinputs.TubeLength / Fp); 
            double Dc = airinputs.TubeOD + 2.0 * airinputs.FinThickness; 
            double area_fin = ((Pt / 2 * Pl * N) - (3.141592653589790000 / 4 * Dc * Dc) / 2 * N) * 2 + 2 * (Pt / 
2 * Ft); 
            double area_tube = 3.141592653589790000 * Dc * N * (Fp - Ft) / 2; 
            double area_totalsurfacearea = area_fin + area_tube;//(airinputs.FinArea + airinputs.TubeArea) / 
Rows / fins/2; //external tube surface area 
            //Min Area Caculations -Start 
            //double F_p = F_s + airinputs.FinThickness; 
            //double Ft = airinputs.FinThickness; 
            double FPM = 1 / Fp; 
            double Height = airinputs.FaceArea / airinputs.TubeLength; 
            double Width = airinputs.TubeLength; 
            double X_diag = Math.Sqrt(Pt * Pt / 4 + Pl * Pl); 
 
            double two_a = (Pt - Dc) - ((Pt - Dc) * Ft * FPM); 
            double two_b = ((X_diag - Dc) - (Pt - Dc) * Ft * FPM) * 2; 
 
            double c = two_a; 
            if (two_b < two_a) 
            { 
                c = two_b; 
            } 
            double min_free_flow_area_Shekhar = (((Height / Pt) - 1) * c + (Pt - Dc) - (Pt - Dc) * Ft * FPM) * 
Width; 
            //Min Area Caculations-End 
            double Area_min = min_free_flow_area_Shekhar / Rows / fins / 2; 
            double Area_Frontal = Pt / 2 * Fp; 
            double Sigma = Area_min / Area_Frontal; 
 
            double u_max = airinputs.AirAvgVelocity / Sigma; 
            //double cp_m=airinputs.AirSpecificHeat; 
            //double Pr=cp_m*airinputs.AirViscosity/airinputs.AirConductivity; 
            double rho_in = airinputs.AirDensity;//airprops.rho_TPRH(airinputs.AirTemperature, 1.01325e5, 0, 
UMDCEEE.Units.UnitSystem.SI); 
            double Re_Dc_MaxV = rho_in * u_max * Dc / airinputs.AirViscosity; 
            double Depth_HX = Pl * N; 
            double Dh = 4 * Area_min * Depth_HX / area_totalsurfacearea; 
            double Xl = 0.5 * Math.Pow(Pt * Pt / 4 + Pl * Pl, 0.5); 
            double Req = 1.27 * (Pt / 2) / (Dc / 2) * Math.Pow(Xl / (Pt / 2) - 0.3, 0.5); 
            double phi = (Req - 1) * (1 + 0.35 * Math.Log(Req)); 
            double G_c = u_max * rho_in; 
            double Pr = airinputs.AirSpecificHeat * airinputs.AirViscosity / airinputs.AirConductivity; 
 
            double netalog1 = 17942179.3978034; 
            double netalog2 = Math.Log(Dc) * 59.4279581980059; 
            double netalog3 = Math.Log(Pl) * 24580093.9305892; 
            double netalog4 = Math.Log(Pt) * 27721182.2564473; 
            double netalog5 = Math.Log(N) * 27544156.2718623; 
            double netalog6 = Math.Log(Sh) * 0.95185621479249; 
            double netalog7 = Math.Log(Ns) * 1809158.82065876; 
            double netalog8 = Math.Log(Fp) * 27721201.9754496; 
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            double netalog9 = Math.Log(Area_min) * -177037.880592169; 
            double netalog10 = Math.Log(area_totalsurfacearea) * -26062145.4509486; 
            double netalog11 = Math.Log(Sigma) * 30685238.1134226; 
            double netalog12 = Math.Log(phi) * 2.58317400016547; 
            double netalog13 = Math.Log(Dh) * -24580116.8167669; 
            double netalog14 = Math.Log(Re_Dc_MaxV) * -2.07107911928566; 
            double netalog15 = Math.Log(Dc) * Math.Log(N) * 37.1312281423879; 
            double netalog16 = Math.Log(Dc) * Math.Log(Sh) * 1.7820443486625; 
            double netalog17 = Math.Log(Dc) * Math.Log(Fp) * 48.2679367033805; 
            double netalog18 = Math.Log(Dc) * Math.Log(area_totalsurfacearea) * -37.0848473668585; 
            double netalog19 = Math.Log(Dc) * Math.Log(Sigma) * 53.3046007187191; 
            double netalog20 = Math.Log(Dc) * Math.Log(phi) * 47.990064613833; 
            double netalog21 = Math.Log(Dc) * Math.Log(Dh) * -50.0947590337132; 
            double netalog22 = Math.Log(Dc) * Math.Log(Re_Dc_MaxV) * -0.628176693319208; 
            double netalog23 = Math.Log(Pl) * Math.Log(N) * -25.1458967673448; 
            double netalog24 = Math.Log(Pl) * Math.Log(Sh) * -1.06815850822648; 
            double netalog25 = Math.Log(Pl) * Math.Log(Ns) * 1305031.45923255; 
            double netalog26 = Math.Log(Pl) * Math.Log(area_totalsurfacearea) * 2138113.92285421; 
            double netalog27 = Math.Log(Pl) * Math.Log(phi) * -23.7709524709937; 
            double netalog28 = Math.Log(Pl) * Math.Log(Dh) * 4276214.52988118; 
            double netalog29 = Math.Log(Pl) * Math.Log(Re_Dc_MaxV) * 0.291657049776574; 
            double netalog30 = Math.Log(Pt) * Math.Log(N) * 4276183.58368063; 
            double netalog31 = Math.Log(Pt) * Math.Log(Sh) * -0.695340858887539; 
            double netalog32 = Math.Log(Pt) * Math.Log(Fp) * 4276214.44245284; 
            double netalog33 = Math.Log(Pt) * Math.Log(area_totalsurfacearea) * -2138094.86315253; 
            double netalog34 = Math.Log(Pt) * Math.Log(Re_Dc_MaxV) * 1.12837652344882; 
            double netalog35 = Math.Log(N) * Math.Log(Ns) * 1305031.52995596; 
            double netalog36 = Math.Log(N) * Math.Log(Fp) * 4276213.85078563; 
            double netalog37 = Math.Log(N) * Math.Log(area_totalsurfacearea) * -2138088.71037093; 
            double netalog38 = Math.Log(N) * Math.Log(Sigma) * 4276214.82245309; 
            double netalog39 = Math.Log(N) * Math.Log(phi) * -0.00162636735822511; 
            double netalog40 = Math.Log(N) * Math.Log(Re_Dc_MaxV) * -0.0264186327915285; 
            double netalog41 = Math.Log(Sh) * Math.Log(Ns) * -0.0155109200519322; 
            double netalog42 = Math.Log(Sh) * Math.Log(Fp) * -0.43030031638354; 
            double netalog43 = Math.Log(Sh) * Math.Log(Sigma) * -0.977396523924845; 
            double netalog44 = Math.Log(Sh) * Math.Log(phi) * 1.30096588644953; 
            double netalog45 = Math.Log(Sh) * Math.Log(Re_Dc_MaxV) * -0.0151020273918269; 
            double netalog46 = Math.Log(Ns) * Math.Log(Fp) * 0.841833527419966; 
            double netalog47 = Math.Log(Ns) * Math.Log(Area_min) * 1305031.66979429; 
            double netalog48 = Math.Log(Ns) * Math.Log(area_totalsurfacearea) * -1305031.52872855; 
            double netalog49 = Math.Log(Ns) * Math.Log(phi) * 0.0647602470181208; 
            double netalog50 = Math.Log(Ns) * Math.Log(Dh) * -1305032.45464571; 
            double netalog51 = Math.Log(Ns) * Math.Log(Re_Dc_MaxV) * -0.0174339232033777; 
            double netalog52 = Math.Log(Fp) * Math.Log(area_totalsurfacearea) * -2138124.92949053; 
            double netalog53 = Math.Log(Fp) * Math.Log(phi) * 22.6485575331487; 
            double netalog54 = Math.Log(Area_min) * Math.Log(Sigma) * 4276212.15950653; 
            double netalog55 = Math.Log(Area_min) * Math.Log(phi) * -23.9913407546967; 
            double netalog56 = Math.Log(Area_min) * Math.Log(Re_Dc_MaxV) * -0.979451337162224; 
            double netalog57 = Math.Log(area_totalsurfacearea) * Math.Log(Sigma) * -2138126.06875628; 
            double netalog58 = Math.Log(area_totalsurfacearea) * Math.Log(Dh) * -2138088.92361933; 
            double netalog59 = Math.Log(Sigma) * Math.Log(phi) * 23.0505567708678; 
            double netalog60 = Math.Log(Sigma) * Math.Log(Dh) * 7.04236815598826; 
            double netalog61 = Math.Log(Sigma) * Math.Log(Re_Dc_MaxV) * 0.484246702052249; 
            double netalog62 = Math.Log(phi) * Math.Log(Re_Dc_MaxV) * -0.428720088596288; 
            double netalog63 = Math.Log(Dh) * Math.Log(Re_Dc_MaxV) * 1.05609005361066; 
            double netalog64 = Math.Log(Dc) * Math.Log(Dc) * 37.0619722732384; 
            double netalog65 = Math.Log(Pl) * Math.Log(Pl) * -2138104.79453111; 
            double netalog66 = Math.Log(Pt) * Math.Log(Pt) * 2138104.00230376; 
            double netalog67 = Math.Log(N) * Math.Log(N) * 2138088.77008549; 
            double netalog68 = Math.Log(Sh) * Math.Log(Sh) * 0.25431737503859; 
            double netalog69 = Math.Log(Fp) * Math.Log(Fp) * 2138109.67414588; 
            double netalog70 = Math.Log(Sigma) * Math.Log(Sigma) * -2138107.30478262; 
            double netalog71 = Math.Log(phi) * Math.Log(phi) * 15.1315485858389; 
            double netalog72 = Math.Log(Dh) * Math.Log(Dh) * -2138109.45007103; 
            double netalog73 = Math.Log(Re_Dc_MaxV) * Math.Log(Re_Dc_MaxV) * 0.0215584692929149; 
 
            double netalogsum = netalog1 + netalog2 + netalog3 + netalog4 + netalog5 + netalog6 + netalog7 + 
netalog8 + netalog9 + netalog10 + netalog11 + netalog12 + netalog13 + netalog14 + netalog15 + netalog16 + 
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netalog17 + netalog18 + netalog19 + netalog20 + netalog21 + netalog22 + netalog23 + netalog24 + netalog25 + 
netalog26 + netalog27 + netalog28 + netalog29 + netalog30 + netalog31 + netalog32 + netalog33 + netalog34 + 
netalog35 + netalog36 + netalog37 + netalog38 + netalog39 + netalog40 + netalog41 + netalog42 + netalog43 + 
netalog44 + netalog45 + netalog46 + netalog47 + netalog48 + netalog49 + netalog50 + netalog51 + netalog52 + 
netalog53 + netalog54 + netalog55 + netalog56 + netalog57 + netalog58 + netalog59 + netalog60 + netalog61 + 
netalog62 + netalog63 + netalog64 + netalog65 + netalog66 + netalog67 + netalog68 + netalog69 + netalog70 + 
netalog71 + netalog72 + netalog73; 
            double neta_corr =Math.Exp(netalogsum); 
 
            double j_simple_log1 = 80532114.2483677; 
            double j_simple_log2 = Math.Log(Dc) * 272.235067496045; 
            double j_simple_log3 = Math.Log(Pl) * 128165505.726041; 
            double j_simple_log4 = Math.Log(Pt) * 149273733.158203; 
            double j_simple_log5 = Math.Log(N) * 135010031.641474; 
            double j_simple_log6 = Math.Log(Sh) * 13636736.3739449; 
            double j_simple_log7 = Math.Log(Ns) * 3.63773799616712; 
            double j_simple_log8 = Math.Log(Fp) * 149274034.837135; 
            double j_simple_log9 = Math.Log(Area_min) * -16545344.3996564; 
            double j_simple_log10 = Math.Log(area_totalsurfacearea) * -137291555.761334; 
            double j_simple_log11 = Math.Log(Sigma) * 149273936.139906; 
            double j_simple_log12 = Math.Log(phi) * 183.131491513323; 
            double j_simple_log13 = Math.Log(Dh) * -132728584.193002; 
            double j_simple_log14 = Math.Log(Re_Dc_MaxV) * -6665545.41733133; 
            double j_simple_log15 = Math.Log(neta_corr) * -40343585.1024629; 
            double j_simple_log16 = Math.Log(Dc) * Math.Log(Ns) * -3.55959802723662; 
            double j_simple_log17 = Math.Log(Dc) * Math.Log(Fp) * 318.776636980344; 
            double j_simple_log18 = Math.Log(Dc) * Math.Log(Area_min) * -11.4255934777327; 
            double j_simple_log19 = Math.Log(Dc) * Math.Log(area_totalsurfacearea) * 2.2500361963408; 
            double j_simple_log20 = Math.Log(Dc) * Math.Log(Sigma) * 349.437695309574; 
            double j_simple_log21 = Math.Log(Dc) * Math.Log(Dh) * -318.945522343899; 
            double j_simple_log22 = Math.Log(Dc) * Math.Log(Re_Dc_MaxV) * -4.01888102850257; 
            double j_simple_log23 = Math.Log(Pl) * Math.Log(Sh) * 19673650.6203763; 
            double j_simple_log24 = Math.Log(Pl) * Math.Log(Ns) * 1.60081865132162; 
            double j_simple_log25 = Math.Log(Pl) * Math.Log(Area_min) * -3291476.73293169; 
            double j_simple_log26 = Math.Log(Pl) * Math.Log(phi) * 11.4702587754243; 
            double j_simple_log27 = Math.Log(Pl) * Math.Log(Dh) * 3291518.00624478; 
            double j_simple_log28 = Math.Log(Pl) * Math.Log(Re_Dc_MaxV) * -4808169.63015303; 
            double j_simple_log29 = Math.Log(Pl) * Math.Log(neta_corr) * -29101782.8324584; 
            double j_simple_log30 = Math.Log(Pt) * Math.Log(N) * 3291351.08117879; 
            double j_simple_log31 = Math.Log(Pt) * Math.Log(Sh) * 19673650.9386528; 
            double j_simple_log32 = Math.Log(Pt) * Math.Log(Ns) * 1.94551603829848; 
            double j_simple_log33 = Math.Log(Pt) * Math.Log(Area_min) * -62.4142968755059; 
            double j_simple_log34 = Math.Log(Pt) * Math.Log(area_totalsurfacearea) * 195.627689413277; 
            double j_simple_log35 = Math.Log(Pt) * Math.Log(Re_Dc_MaxV) * 3.37498740361868; 
            double j_simple_log36 = Math.Log(Pt) * Math.Log(neta_corr) * -33.0760114228539; 
            double j_simple_log37 = Math.Log(N) * Math.Log(Sh) * 19673650.8424306; 
            double j_simple_log38 = Math.Log(N) * Math.Log(Fp) * 3291547.75665301; 
            double j_simple_log39 = Math.Log(N) * Math.Log(area_totalsurfacearea) * -6582830.21315843; 
            double j_simple_log40 = Math.Log(N) * Math.Log(Sigma) * 3291567.57426615; 
            double j_simple_log41 = Math.Log(N) * Math.Log(phi) * 1.18292863770038; 
            double j_simple_log42 = Math.Log(N) * Math.Log(Dh) * -3291514.11156333; 
            double j_simple_log43 = Math.Log(N) * Math.Log(Re_Dc_MaxV) * -4808171.35907932; 
            double j_simple_log44 = Math.Log(N) * Math.Log(neta_corr) * -29101779.8775928; 
            double j_simple_log45 = Math.Log(Sh) * Math.Log(Fp) * 19673651.4245086; 
            double j_simple_log46 = Math.Log(Sh) * Math.Log(area_totalsurfacearea) * -19673650.8347381; 
            double j_simple_log47 = Math.Log(Sh) * Math.Log(Sigma) * 19673650.7724948; 
            double j_simple_log48 = Math.Log(Sh) * Math.Log(Dh) * -19673651.2612372; 
            double j_simple_log49 = Math.Log(Ns) * Math.Log(Fp) * 5.91966623115747; 
            double j_simple_log50 = Math.Log(Ns) * Math.Log(Sigma) * 5.04417428146911; 
            double j_simple_log51 = Math.Log(Ns) * Math.Log(phi) * -2.48344353816151; 
            double j_simple_log52 = Math.Log(Ns) * Math.Log(Dh) * -5.83856283717319; 
            double j_simple_log53 = Math.Log(Fp) * Math.Log(phi) * 196.464693856572; 
            double j_simple_log54 = Math.Log(Fp) * Math.Log(Dh) * -164.780046282166; 
            double j_simple_log55 = Math.Log(Fp) * Math.Log(neta_corr) * 4.25066727832751; 
            double j_simple_log56 = Math.Log(Area_min) * Math.Log(area_totalsurfacearea) * -3291546.72909644; 
            double j_simple_log57 = Math.Log(Area_min) * Math.Log(Dh) * 101.053389558153; 
            double j_simple_log58 = Math.Log(Area_min) * Math.Log(Re_Dc_MaxV) * -4808172.76476217; 
            double j_simple_log59 = Math.Log(Area_min) * Math.Log(neta_corr) * -29101744.9639954; 
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            double j_simple_log60 = Math.Log(area_totalsurfacearea) * Math.Log(Sigma) * -20.319157452861; 
            double j_simple_log61 = Math.Log(area_totalsurfacearea) * Math.Log(Dh) * 3291513.23653443; 
            double j_simple_log62 = Math.Log(area_totalsurfacearea) * Math.Log(Re_Dc_MaxV) * 4808171.29007918; 
            double j_simple_log63 = Math.Log(area_totalsurfacearea) * Math.Log(neta_corr) * 29101779.0374533; 
            double j_simple_log64 = Math.Log(Sigma) * Math.Log(phi) * 215.031152727372; 
            double j_simple_log65 = Math.Log(Sigma) * Math.Log(Dh) * -33.6946332106141; 
            double j_simple_log66 = Math.Log(phi) * Math.Log(Dh) * -205.121992217758; 
            double j_simple_log67 = Math.Log(phi) * Math.Log(Re_Dc_MaxV) * -2.23851228811571; 
            double j_simple_log68 = Math.Log(Dh) * Math.Log(Re_Dc_MaxV) * 4808173.12570148; 
            double j_simple_log69 = Math.Log(Dh) * Math.Log(neta_corr) * 29101743.3651972; 
            double j_simple_log70 = Math.Log(Re_Dc_MaxV) * Math.Log(neta_corr) * 0.522541619764479; 
 
            double j_simple_log71 = Math.Log(Dc) * Math.Log(Dc) * 10.7093449301768; 
            double j_simple_log72 = Math.Log(Pl) * Math.Log(Pl) * -3291421.26901198; 
            double j_simple_log73 = Math.Log(N) * Math.Log(N) * 3291415.78826394; 
            double j_simple_log74 = Math.Log(Fp) * Math.Log(Fp) * 62.4507604144673; 
            double j_simple_log75 = Math.Log(area_totalsurfacearea) * Math.Log(area_totalsurfacearea) * 
3291414.53865191; 
            double j_simple_log76 = Math.Log(Sigma) * Math.Log(Sigma) * -55.7887738687927; 
            double j_simple_log77 = Math.Log(phi) * Math.Log(phi) * -5.39275212863774; 
            double j_simple_log78 = Math.Log(Re_Dc_MaxV) * Math.Log(Re_Dc_MaxV) * 0.0376132150756312; 
            double j_simple_log79 = Math.Log(neta_corr) * Math.Log(neta_corr) * -1.89603742613159; 
 
 
            double j_simple_log_sum = j_simple_log1 + j_simple_log2 + j_simple_log3 + j_simple_log4 + 
j_simple_log5 + j_simple_log6 + j_simple_log7 + j_simple_log8 + j_simple_log9 + j_simple_log10 + j_simple_log11 
+ j_simple_log12 + j_simple_log13 + j_simple_log14 + j_simple_log15 + j_simple_log16 + j_simple_log17 + 
j_simple_log18 + j_simple_log19 + j_simple_log20 + j_simple_log21 + j_simple_log22 + j_simple_log23 + 
j_simple_log24 + j_simple_log25 + j_simple_log26 + j_simple_log27 + j_simple_log28 + j_simple_log29 + 
j_simple_log30 + j_simple_log31 + j_simple_log32 + j_simple_log33 + j_simple_log34 + j_simple_log35 + 
j_simple_log36 + j_simple_log37 + j_simple_log38 + j_simple_log39 + j_simple_log40 + j_simple_log41 + 
j_simple_log42 + j_simple_log43 + j_simple_log44 + j_simple_log45 + j_simple_log46 + j_simple_log47 + 
j_simple_log48 + j_simple_log49 + j_simple_log50 + j_simple_log51 + j_simple_log52 + j_simple_log53 + 
j_simple_log54 + j_simple_log55 + j_simple_log56 + j_simple_log57 + j_simple_log58 + j_simple_log59 + 
j_simple_log60 + j_simple_log61 + j_simple_log62 + j_simple_log63 + j_simple_log64 + j_simple_log65 + 
j_simple_log66 + j_simple_log67 + j_simple_log68 + j_simple_log69 + j_simple_log70 + j_simple_log71 + 
j_simple_log72 + j_simple_log73 + j_simple_log74 + j_simple_log75 + j_simple_log76 + j_simple_log77 + 
j_simple_log78 + j_simple_log79; 
            double j_simple = Math.Exp(j_simple_log_sum); 
            double HTC = j_simple * airinputs.AirDensity * u_max * airinputs.AirSpecificHeat / Math.Pow(Pr, 
0.6666666666667); 
 
            return HTC; 
        } 
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Appendix C: Modified Slit fin DP correlation 

   double Pl = airinputs.TubeHorizontalSpacing; 
            double Pt = airinputs.TubeVerticalSpacing; 
            double N = airinputs.Columns; 
            double Sh = airinputs.SlitHeight; 
            double Ns = airinputs.SlitCount; 
            double Ft = airinputs.FinThickness; 
            double Fp = airinputs.FinSpacing + Ft; 
            double Rows = airinputs.Rows; 
            double fins = (airinputs.TubeLength / Fp); 
            double Dc = airinputs.TubeOD + 2.0 * airinputs.FinThickness; 
            double area_fin = ((Pt / 2 * Pl * N) - (3.141592653589790000 / 4 * Dc * Dc) / 2 * N) * 2 + 2 * (Pt / 
2 * Ft); 
            double area_tube = 3.141592653589790000 * Dc * N * (Fp - Ft) / 2; 
            double area_totalsurfacearea = area_fin + area_tube;  
            double FPM = 1 / Fp; 
            double Height = airinputs.FaceArea / airinputs.TubeLength; 
            double Width = airinputs.TubeLength; 
            double X_diag = Math.Sqrt(Pt * Pt / 4 + Pl * Pl); 
            double two_a = (Pt - Dc) - ((Pt - Dc) * Ft * FPM); 
            double two_b = ((X_diag - Dc) - (Pt - Dc) * Ft * FPM) * 2; 
            double c = two_a; 
            if (two_b < two_a) 
            { 
                c = two_b; 
            } 
            double min_free_flow_area_OTS = (((Height / Pt) - 1) * c + (Pt - Dc) - (Pt - Dc) * Ft * FPM) * 
Width; 
            //Min Area Caculations-End 
            double Area_min = min_free_flow_area_OTS / Rows / fins / 2; 
            double Area_Frontal = Pt / 2 * Fp; 
            double Sigma = Area_min / Area_Frontal; 
            double u_max = airinputs.AirAvgVelocity / Sigma;     
            double rho_in = airinputs.AirDensity; 
            double Re_Dc_MaxV = rho_in * u_max * Dc / airinputs.AirViscosity; 
            double Depth_HX = Pl * N; 
            double Dh = 4 * Area_min * Depth_HX / area_totalsurfacearea; 
            double Xl = 0.5 * Math.Pow(Pt * Pt / 4 + Pl * Pl, 0.5); 
            double Req = 1.27 * (Pt / 2) / (Dc / 2) * Math.Pow(Xl / (Pt / 2) - 0.3, 0.5); 
            double phi = (Req - 1) * (1 + 0.35 * Math.Log(Req)); 
            double G_c = u_max * rho_in; 

   double f_simplelog1 =  9.5765536239377873000000000; 
            double f_simplelog2 = Math.Log(Dc) * 0.4900168640088172200000000; 
            double f_simplelog3 = Math.Log(Pl) * -0.0882040780689943710000000; 
            double f_simplelog4 = Math.Log(Pt) * -0.0707158673278634460000000; 
            double f_simplelog5 = Math.Log(N) * 0.0858009514077481270000000; 
            double f_simplelog6 = Math.Log(Sh) * -1.1900871655082168000000000; 
            double f_simplelog7 = Math.Log(Ns) * -0.9543419835184717700000000; 
            double f_simplelog8 = Math.Log(Fp) * 2.7725174264564649000000000; 
            double f_simplelog9 = Math.Log(Re_Dc_MaxV) * -1.1980736352569965000000000; 
            double f_simplelog10 = Math.Log(Dc) * Math.Log(Pl) * -0.1829259547967355400000000; 
            double f_simplelog11 = Math.Log(Dc) * Math.Log(Pt) * 0.5776489783860661000000000; 
            double f_simplelog12 = Math.Log(Dc) * Math.Log(N) * 0.0565284389055972920000000; 
            double f_simplelog13 = Math.Log(Dc) * Math.Log(Ns) * -0.1446129565072794300000000; 
            double f_simplelog14 = Math.Log(Dc) * Math.Log(Fp) * -0.0954219722212883700000000; 
            double f_simplelog15 = Math.Log(Dc) * Math.Log(Re_Dc_MaxV) * -0.0680157322658284800000000; 
            double f_simplelog16 = Math.Log(Pl) * Math.Log(N) * -0.0156943241693620030000000; 
            double f_simplelog17 = Math.Log(Pl) * Math.Log(Sh) * -0.0449065497789247760000000; 
            double f_simplelog18 = Math.Log(Pl) * Math.Log(Ns) * -0.0908558862117365970000000; 
            double f_simplelog19 = Math.Log(Pl) * Math.Log(Fp) * -0.0934841638662662210000000; 
            double f_simplelog20 = Math.Log(Pl) * Math.Log(Re_Dc_MaxV) * -0.1141656861987620500000000; 
            double f_simplelog21 = Math.Log(Pt) * Math.Log(Sh) * -0.1792837397106576700000000; 
            double f_simplelog22 = Math.Log(Pt) * Math.Log(Ns) * 0.0989780260858960510000000; 
            double f_simplelog23 = Math.Log(Pt) * Math.Log(Fp) * -0.0704959840131583890000000; 
            double f_simplelog24 = Math.Log(Pt) * Math.Log(Re_Dc_MaxV) * -0.0539615370308442690000000; 
            double f_simplelog25 = Math.Log(N) * Math.Log(Sh) * 0.0163537393630221810000000; 
            double f_simplelog26 = Math.Log(N) * Math.Log(Ns) * 0.0121346869467321440000000; 
            double f_simplelog27 = Math.Log(N) * Math.Log(Fp) * -0.0514532547284778240000000; 
            double f_simplelog28 = Math.Log(N) * Math.Log(Re_Dc_MaxV) * -0.0172947970129640160000000; 
            double f_simplelog29 = Math.Log(Sh) * Math.Log(Ns) * 0.0831266434845741030000000; 
            double f_simplelog30 = Math.Log(Sh) * Math.Log(Fp) * 1.5249076022678887000000000; 
            double f_simplelog31 = Math.Log(Sh) * Math.Log(Re_Dc_MaxV) * 0.0454881326668272750000000; 
            double f_simplelog32 = Math.Log(Ns) * Math.Log(Fp) * -0.0985450056949451060000000; 
            double f_simplelog33 = Math.Log(Ns) * Math.Log(Re_Dc_MaxV) * 0.0402728091140915690000000; 
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            double f_simplelog34 = Math.Log(Fp) * Math.Log(Re_Dc_MaxV) * 0.1556237412785059500000000; 
            double f_simplelog35 = Math.Log(Dc )* Math.Log(Dc) * -0.1244192523527718800000000; 
            double f_simplelog36 = Math.Log(Pl)* Math.Log(Pl) * 0.1923886874359070600000000; 
            double f_simplelog37 = Math.Log(Pt) * Math.Log(Pt) * -0.2506886884295970200000000; 
            double f_simplelog38 = Math.Log(Sh) * Math.Log(Sh) * -0.6912115792625164200000000; 
            double f_simplelog39 = Math.Log(Ns) * Math.Log(Ns) * 0.0849876172724565450000000; 
            double f_simplelog40 = Math.Log(Fp) * Math.Log(Fp) * -0.4479169400134929100000000; 
            double f_simplelog41 = Math.Log(Re_Dc_MaxV) * Math.Log(Re_Dc_MaxV) * 0.0628121151012785840000000; 
 
            double f_simplelogsum = f_simplelog1 + f_simplelog2 + f_simplelog3 + f_simplelog4 + f_simplelog5 + 
f_simplelog6 + f_simplelog7 + f_simplelog8 + f_simplelog9 + f_simplelog10 + f_simplelog11 + 
           f_simplelog12 + f_simplelog13 + f_simplelog14 + f_simplelog15 + f_simplelog16 + f_simplelog17 + 
f_simplelog18 + f_simplelog19 + f_simplelog20 + f_simplelog21 + f_simplelog22 + f_simplelog23 + 
           f_simplelog24 + f_simplelog25 + f_simplelog26 + f_simplelog27 + f_simplelog28 + f_simplelog29 + 
f_simplelog30 + f_simplelog31 + f_simplelog32 + f_simplelog33 + f_simplelog34 + f_simplelog35 + 
           f_simplelog36 + f_simplelog37 + f_simplelog38 + f_simplelog39 + f_simplelog40 + f_simplelog41;       
double f = Math.Exp(f_simplelogsum); 
            double DP = (f * area_totalsurfacearea / (Area_min)) * (Math.Pow(G_c, 2.0) / (2.0 * rho_in)); 
//simplified expression without iteration 
            return DP;  
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Appendix D: Slit Experimental Data HTC Summary 

Coil# Test# ReDc HTC CFD correlation [W/m^2K] HTCconductionAvgHeatload [W/m^2K] HTC_no_conduction 
[W/m^2K] 

1 1 1265.691986 195.5219 111.8223306 111.98 
1 2 1266.786841 195.5782 112.823237 112.76 
1 3 1267.053191 195.5806 113.7299662 112.98 
1 4 1954.112924 222.6726 124.7182827 125.09 
1 5 1953.882943 222.6693 125.6755232 125.64 
1 6 1952.457353 222.6284 126.5266928 126.08 
1 7 527.8449115 136.6515 85.73205025 85.573 
1 8 526.9934027 136.542 87.13928169 86.915 
1 9 526.7766734 136.5185 89.85427298 88.695 
2 1 1307.004201 196.8687 102.0750335 100.23 
2 2 1306.367902 196.8363 101.9965232 98.631 
2 3 1306.995238 196.8579 104.3672641 97.926 
2 4 2021.416816 221.0497 118.7082032 111.86 
2 5 2025.848451 221.1602 115.4969413 110.36 
2 6 2020.437164 221.0141 115.5108505 109.26 
2 7 553.6829716 145.343 86.79054893 83.309 
2 8 559.9227165 146.027 87.60608066 81.144 
2 9 558.4739176 145.8579 83.52688049 77.475 
3 1 1237.86224 173.519 101.8266128 103.26 
3 2 1237.925716 173.5143 102.58425 103.89 
3 3 1238.531691 173.531 103.2736433 104.37 
3 4 1909.359875 194.4066 117.0988755 119.64 
3 5 1918.857646 194.597 117.8342724 120.12 
3 6 1915.913249 194.5199 118.3963991 120.38 
3 7 514.7648786 131.1926 79.33278442 80.435 
3 8 515.2222255 131.2314 80.79506841 81.648 
3 9 515.6060407 131.2662 82.2250348 82.754 
4 1 1263.618973 178.0196 102.2659065 103.55 
4 2 1262.640712 177.9834 101.6056553 103.22 
4 3 1260.765111 177.9134 100.7957225 102.49 
4 4 1953.437786 199.1551 115.210187 117.26 
4 5 1953.216436 199.1391 114.4286589 116.55 
4 6 1953.053041 199.1299 113.6508707 115.83 
4 7 527.7038263 137.0848 81.17841792 82.313 
4 8 528.2893738 137.1327 80.56241375 81.821 
4 9 528.1327053 137.1167 79.51533002 80.85 
5 1 1392.687343 183.2094 148.4105221 144.06 
5 2 1389.752018 183.1144 147.4069274 145.69 
5 3 1387.254615 183.0257 146.6007746 146.36 
5 4 2165.744446 202.0861 172.5359156 168.1 
5 5 2158.531544 201.9737 170.2707599 169.01 
5 6 2155.625699 201.929 169.9965194 169.92 
5 7 571.370977 137.2053 107.8394713 104.38 
5 8 569.2627683 137.0217 109.6182705 107.88 
5 9 568.02489 136.9174 110.0164102 109.35 
6 1 1349.801599 182.5215 148.8085962 145.82 
6 2 1352.679753 182.6697 148.122697 145.89 
6 3 1352.858261 182.6791 147.6662334 146.79 
6 4 2078.208924 206.0667 169.8285331 167.83 
6 5 2081.989989 206.1464 170.3132108 169.25 
6 6 2081.484788 206.1362 170.3177841 170.4 
6 7 566.9013107 128.8554 112.2194958 106.92 
6 8 567.8333403 128.9587 110.2335927 106.81 
6 9 567.7100311 128.9422 106.7363943 105.09 
7 1 1433.887506 216.9759 173.6703245 154.31 
7 2 1429.057835 216.7215 173.3584106 160.99 
7 3 1425.331843 216.5082 172.6225633 164 
7 4 2226.276991 245.6628 199.5014482 179.2 
7 5 2217.845838 245.4625 198.6209385 186.02 
7 6 2212.63556 245.5595 199.8295338 191.05 
7 7 587.4728308 145.23 139.2240178 112.29 
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7 8 585.1261976 144.896 138.1279746 117.98 
7 9 583.7375772 144.7005 135.3640708 120.21 
8 1 1412.328249 218.4208 196.9002068 160.23 
8 2 1411.848177 218.3816 193.7525704 161.17 
8 3 1410.476079 218.2865 190.2582371 162.26 
8 4 2172.306768 255.8744 221.9838454 191.43 
8 5 2170.642777 255.7837 218.4772704 191.99 
8 6 2169.431307 255.7578 216.3116114 194.11 
8 7 589.2571462 134.2734 123.3528419 90.54 
8 8 588.9271454 134.2238 111.7833398 88.953 
8 9 587.9024381 134.0595 110.6907668 90.825 
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Appendix E: Louver Experimental Data HTC Summary 

Coil# Test# ReDc HTC CFD correlation [W/m^2K] HTCconductionAvgHeatload [W/m^2K] HTC_no_conduction 
[W/m^2K] 

9 1 1313.49533 141.6791 120.2344039 116.68 
9 2 1314.765495 141.7339 116.3862512 115.93 
9 3 1315.405488 141.7584 119.6963772 114.8 
9 4 2035.890374 171.1489 136.4490063 137.84 
9 5 2034.824541 171.1071 141.9626207 137.03 
9 6 2034.497442 171.0924 153.4334583 135.34 
9 7 557.3548734 100.1899 86.22487294 86.406 
9 8 557.5793479 100.2102 88.67105048 89.298 
9 9 557.3487566 100.1807 92.82042801 87.738 

10 1 1306.079647 135.8453 107.3289216 115.23 
10 2 1311.09291 136.0442 109.5863018 115.07 
10 3 1311.081199 136.0347 110.1469689 114.2 
10 4 2035.57779 161.3229 139.5702558 135.89 
10 5 2035.5565 161.2882 141.2802042 134.5 
10 6 2044.675723 161.5645 125.2970862 133.14 
10 7 568.2292729 97.5039 82.42822496 88.223 
10 8 557.3046627 96.7256 82.67714943 87.834 
10 9 566.9429701 97.38 92.67971871 88.392 
11 1 1343.536501 149.7504 131.7719756 128.5 
11 2 1341.82021 149.6783 135.280644 128.8 
11 3 1343.944184 149.7577 144.6047011 130.49 
11 4 2074.766642 176.9774 155.4617234 152.19 
11 5 2074.245287 176.9526 160.1998114 152.93 
11 6 2074.787172 176.9701 173.9451504 156.32 
11 7 570.3979539 108.688 102.8111663 98.968 
11 8 570.8227891 108.7039 105.3146806 98.18 
11 9 571.4067134 108.7381 110.8394484 97.323 
12 1 1340.394675 142.9548 126.8261451 127.28 
12 2 1339.890863 142.9383 135.0994569 126.9 
12 3 1340.010382 142.9205 117.6322622 125.2 
12 4 2063.39282 167.0952 147.6149593 146.46 
12 5 2078.040001 167.5045 164.7881639 146.81 
12 6 2083.976631 167.6702 148.1489624 145.24 
12 7 572.8597964 102.5879 94.04426435 98.03 
12 8 573.1621757 102.5967 103.2590658 97.466 
12 9 572.6561321 102.5554 91.24104942 96.923 
13 1 1346.112148 140.2047 200.8487384 105.92 
13 2 1346.176775 140.1946 219.9871821 101.45 
13 3 1350.51772 140.2995 364.1445339 94.582 
13 4 2088.040171 167.0702 222.0566556 121.32 
13 5 2085.353032 166.9738 291.4082225 116.19 
13 6 2085.093146 166.9723 427.0284115 109.73 
13 7 570.5416642 102.8246 170.564506 80.175 
13 8 570.6297504 102.8197 197.5237523 76.263 
13 9 571.4807279 102.8552 349.2595843 70.815 
14 1 1289.384752 156.6248 116.9028102 120.5 
14 2 1289.698858 156.6383 118.6080466 120.26 
14 3 1290.315994 156.6642 125.2690135 119.63 
14 4 1994.803648 192.0078 136.5292947 137.79 
14 5 1997.474896 192.086 145.2427904 137.04 
14 6 1996.608542 192.0835 132.3335821 136.62 
14 7 546.8713212 112.158 92.87800241 93.826 
14 8 546.9556173 112.1608 92.93691466 93.317 
14 9 547.1362518 112.1669 95.78919307 92.873 
15 1 1340.634661 138.8944 180.5626591 105 
15 2 1354.222953 139.4265 220.6780876 103.06 
15 3 1341.157594 138.9074 276.8468638 97.034 
15 4 2074.92064 165.133 217.441172 120.65 
15 5 2075.825926 165.1581 248.7520469 117.6 
15 6 2076.424093 165.1769 334.1655824 112.88 
15 7 568.7202031 102.3926 140.4835939 79.107 
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15 8 569.0222044 102.401 167.1977129 76.049 
15 9 569.3997425 102.4179 230.0276712 71.675 
16 1 1293.381787 155.6568 121.2408965 118.45 
16 2 1294.697619 155.7264 118.9280304 117.69 
16 3 1295.19902 155.747 120.5232911 116.31 
16 4 1996.203249 192.8498 138.3406111 136.34 
16 5 1998.32936 192.9626 133.1698463 135.65 
16 6 1997.59204 192.918 146.4099196 134.3 
16 7 549.1450167 109.7978 92.37392021 92.192 
16 8 549.5449113 109.8225 93.02624049 91.437 
16 9 549.9481122 109.8443 96.27609048 90.789 
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Appendix F: Slit Experimental Data DP Summary 

Coil# Test# ReDc ADP Experiment [Pa] ADP Correlation [Pa] 
1 1 1303.159822 54.63 67.5391 
1 2 1302.735529 54.55 67.4972 
1 3 1302.612082 54.53 67.4627 
1 4 2017.062244 105.77 128.3456 
1 5 2014.558378 105.59 128.1309 
1 6 2016.289535 105.39 128.2637 
1 7 552.3493383 16.42 20.5093 
1 8 552.7498564 16.43 20.5173 
1 9 552.2641846 16.39 20.4879 
2 1 1307.004201 32 34.5996 
2 2 1306.367902 31.88 34.5704 
2 3 1306.995238 31.79 34.5889 
2 4 2021.416816 62.62 66.0634 
2 5 2025.848451 62.64 66.2687 
2 6 2020.437164 62.52 65.9991 
2 7 553.6829719 9.14 10.3831 
2 8 559.9227156 9.13 10.5344 
2 9 558.4739184 9.09 10.4947 
3 1 1262.350123 36.64 43.2652 
3 2 1263.193465 36.53 43.29 
3 3 1262.431858 36.48 43.2552 
3 4 1951.924425 73.82 83.8073 
3 5 1951.211401 73.7 83.7823 
3 6 1960.10265 73.68 84.361 
3 7 536.2277203 10.03 12.6493 
3 8 537.0554782 10 12.6515 
3 9 537.3836146 9.99 12.6255 
4 1 1275.36508 20.45 24.1632 
4 2 1275.288502 20.4 24.1469 
4 3 1276.840541 20.32 24.1846 
4 4 1970.394295 41.51 46.8635 
4 5 1971.168782 41.45 46.8906 
4 6 1968.925963 41.38 46.816 
4 7 542.2230637 5.25 7.045 
4 8 543.0012465 5.25 7.056 
4 9 544.9579634 5.23 7.0882 
5 1 1390.48286 28.37318954 31.9673 
5 2 1387.229505 28.52715271 31.8709 
5 3 1384.183243 28.5722622 31.7812 
5 4 2156.962887 54.6904315 61.2936 
5 5 2151.339748 54.89182934 61.0395 
5 6 2149.041651 54.90592461 60.9389 
5 7 568.6689337 8.235286332 9.1923 
5 8 566.7855719 8.334974647 9.1527 
5 9 565.7432897 8.328514214 9.1303 
6 1 1393.907934 47.66556063 61.3443 
6 2 1386.720213 47.94680894 60.8881 
6 3 1387.283038 48.20259709 60.9115 
6 4 2174.035707 91.51561987 118.3414 
6 5 2165.439089 91.70279942 117.6554 
6 6 2161.665014 91.7910531 117.3645 
6 7 560.1463289 15.03169021 17.3591 
6 8 557.4169567 15.17063668 17.2492 
6 9 555.6420418 15.16933511 17.1796 
7 1 1433.887506 44.09271341 55.9107 
7 2 1429.057835 44.30621565 55.6293 
7 3 1425.331842 44.42851007 55.3888 
7 4 2226.276992 80.58803785 104.7396 
7 5 2217.84584 80.89403643 104.2134 
7 6 2212.63556 81.30221399 104.1769 
7 7 587.4728302 14.48783496 16.825 
7 8 585.1261968 14.63024285 16.7418 
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7 9 583.7375773 14.68506407 16.6951 
8 1 2163.442867 159.5 189.0594 
8 2 2161.984817 159.09 188.8522 
8 3 2162.481073 158.74 188.8721 
8 4 1446.354393 92.17 107.2124 
8 5 1446.203582 91.89 107.1684 
8 6 1449.828556 91.69 107.4902 
8 7 613.1621771 30.88 34.2609 
8 8 613.8073694 30.73 34.2846 
8 9 614.2141267 30.42 34.2997 

 

 

  



117 
 

Appendix G: Louver Experimental Data DP Summary 

Coil# Test# ReDc ADP Experiment [Pa] ADP Correlation [Pa] 
9 1 1313.49533 18.61 20.4573 
9 2 1314.765495 18.54 20.4873 
9 3 1315.405488 18.5 20.4998 
9 4 2035.890374 38.83 42.8418 
9 5 2034.824541 38.78 42.7996 
9 6 2034.497442 38.67 42.7839 
9 7 557.3548734 4.61 5.4233 
9 8 557.5793479 4.61 5.4279 
9 9 557.3487566 4.58 5.4196 

10 1 1306.079647 35.28 38.6815 
10 2 1311.09291 35.28 38.9162 
10 3 1311.081199 35.13 38.901 
10 4 2035.57779 72.92 81.4573 
10 5 2035.5565 72.87 81.3974 
10 6 2044.675723 72.68 82.0273 
10 7 568.2292729 9.18 10.7312 
10 8 557.3046627 9.19 10.4257 
10 9 566.9429701 9.15 10.6745 
11 1 1343.536501 26.57 27.706 
11 2 1341.82021 26.53 27.6511 
11 3 1343.944184 26.41 27.7087 
11 4 2074.766642 53.83 56.1095 
11 5 2074.245287 53.75 56.0722 
11 6 2074.787172 53.62 56.0959 
11 7 570.3979539 7.18 7.7596 
11 8 570.8227891 7.15 7.7621 
11 9 571.4067134 7.2 7.7704 
12 1 1340.394675 50.83 53.2975 
12 2 1339.890863 50.71 53.2734 
12 3 1340.010382 50.59 53.233 
12 4 2063.39282 102.14 106.7956 
12 5 2078.040001 102.04 108.0292 
12 6 2083.976631 101.72 108.5327 
12 7 572.8597964 14.44 15.2225 
12 8 573.1621757 14.44 15.2223 
12 9 572.6561321 14.31 15.2002 
13 1 1346.112148 44.27 40.3665 
13 2 1346.176775 44.08 40.3486 
13 3 1350.51772 44.02 40.4341 
13 4 2088.040171 85.34 80.8112 
13 5 2085.353032 85.08 80.6209 
13 6 2085.093146 84.99 80.6242 
13 7 570.5416642 13.2 11.6516 
13 8 570.6297504 13.3 11.6474 
13 9 571.4807279 13.35 11.6606 
14 1 1289.384752 23.03 19.2292 
14 2 1289.698858 22.96 19.2343 
14 3 1290.315994 22.96 19.244 
14 4 1994.803648 47.52 39.3982 
14 5 1997.474896 47.45 39.4306 
14 6 1996.608542 47.39 39.4469 
14 7 546.8713212 5.77 5.2839 
14 8 546.9556173 5.73 5.2843 
14 9 547.1362518 5.77 5.285 
15 1 1340.634661 40.6 39.5209 
15 2 1354.222953 40.46 40.139 
15 3 1341.157594 40.29 39.5326 
15 4 2074.92064 79.43 79.6533 
15 5 2075.825926 79.27 79.6984 
15 6 2076.424093 79.17 79.7343 
15 7 568.7202031 11.66 11.2396 
15 8 569.0222044 11.66 11.2418 
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15 9 569.3997425 11.59 11.2487 
16 1 1293.381787 22.31 19.0556 
16 2 1294.697619 22.27 19.084 
16 3 1295.19902 22.25 19.0907 
16 4 1996.203249 46.45 39.0648 
16 5 1998.32936 46.37 39.1418 
16 6 1997.59204 46.38 39.1087 
16 7 549.1450167 5.58 5.1998 
16 8 549.5449113 5.47 5.2043 
16 9 549.9481122 5.52 5.208 
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